Edexcel Maths S1

Mark Scheme Pack

2005-2013

GCE Edexcel GCE Statistics S1 (6683)

Summer 2005

advancing learning, changing lives

Mark Scheme (Results)

June 2005 6683 Statistics S1 Mark Scheme

Question Number	Scheme		Mark	ŝ
1.	Diagram A : $y \& x$: $r = -0.79$; As x increases, y decreases or most points lie in the 2^n	^d and 4 th quadrant.	B1;B1dep	,
	Diagram B : $v \& u$: r = 0.08; No real pattern. Several value or points lie in all four quade	tes of v for one value of u rants, randomly scattered.	B1;B1dep)
	Diagram C : $t \& s$: $r = 0.68$; As s increases, t increases of and 3^{rd} quadrants	r most points lie in the 1 st	B1;B1dep	(6)
2. (a)	Distance is a continuous. $ED = freq/class width \Rightarrow 0.8, 3.8, 5.3, 3.7, 0.75, 0.1$	continuous	B1	(1)
(D) (C)	$Q_2 = 50.5 + \frac{(67 - 23)}{53} \times 10 = 58.8$	awrt 58.8/58.9	MI AI M1 A1	(2)
	$Q_1 = 52.48; Q_3 = 67.12$	awrt 52.5/52.6 67.1/67.3	A1 A1	(4)
(d)	Special case : no working BT BT BT (= A's on the epen) $\overline{x} = \frac{8379.5}{134} = 62.5335$ $s = \sqrt{\frac{557489.75}{134} - \left(\frac{8379.5}{134}\right)^2}$	awrt 62.5	B1 M1 A1√	
	$s = 15.8089 (S_{n-1} = 15.86825)$ Special case : answer only B1 B1 (= A's on the epen)	awrt 15.8 (15.9)	A1	(4)
(e)	$\frac{Q_3 - 2Q_2 + Q_1}{Q_3 - Q_1} = \frac{67.12 - 2 \times 58.8 + 52.48}{67.12 - 52.48}$	subst their $Q_1, Q_2 \& Q_3$ need to show working for A1 $$ and have reasonable values for quartiles	M1 A1√	
(f)	$= 0.1366 \implies ; +ve \text{ skew}$ For +ve skew Mean > Median & 62.53 > 58.80 <u>or</u> Q ₃ - Q ₂ (8.32) > Q ₂ - Q ₁ (6.32) Therefore +ve skew	awrt 0.14	A1; B1 B1	(4)

Question Number	Scheme		Mar	ks
3. (a)	$\mathbf{S}_{xy} = 8880 - \frac{130 \times 48}{8} = (8100)$	may be implied	B1	
	$S_{xx} = 20487.5$			
	$b = \frac{s_{xy}}{s_{xx}} = \frac{8100}{20487.5} = 0.395363$	allow use of their S_{xy} for M awrt 0.395	M1 A1	
	$a = \frac{48}{8} - (0.395363)\frac{130}{8} = -0.424649$	allow use of their <i>b</i> for M awrt -0.425	M1 A1	
	y = -0.425 + 0.395x	3s.f.	B1 √	(6)
	Special case answer only B0 M0 B1 M0 B1 B1(fully correct (\equiv to B0 M0 A1 M0 A1 B1 on the epen)	et 3sf)		(-)
(b)	f - 100 = -0.424649 + 0.395(m - 250)	subst f - 100 & m - 250	M1 A1√	
	f = 0.735 + 0.395m	3 s.f.	A1	(2)
(c)	$m = 235 \implies f = 93.64489$	awrt 93.6/93.7	B1	(1)

4(a)	1.5 $(Q_3 - Q_1) = 1.5 (28 - 12) = 24$ $Q_3 + 24 = 52 \implies 63$ is an outlier	may be impli- att Q3 + o	ed r Q1,	B1 M1,	
	$Q_1 - 24 < 0 \Rightarrow$ no outliers	63 is a	an outlier	AI A1	
				M1 A1 A1	
					(7)
(b)	Distribution is +ve skew; $Q_2 - Q_1(5) < Q_3 - Q_2$	2(11);		B1; B1	(2)
(c)	Many delays are small so passengers should fi comment in the context of the question.	nd these acceptable or sensible		B1	(1)

5.(a)	k + 2k + 3k + 5k + 6k = 1	use of $\sum P(X = x) = 1$	M1	
	17k = 1 $k = \frac{1}{17} = 0.0588$		A1	(2)
(b)	$E(X) = 1 \times \frac{1}{17} + 2 \times \frac{2}{17} + \dots + 5 \times \frac{6}{17} = \frac{64}{17}$ use of	of $\sum x P(X = x)$ and at least 2 prob correct	M1	
	$=3\frac{15}{17}$	Do not ignore subsequent working	A1	
(c)	$E(X^{2}) = 1^{2} \times \frac{1}{17} + 2^{2} \times \frac{2}{17} + \dots + 5^{2} \times \frac{6}{17} = \left(\frac{266}{17} = 15\right)$	$(.6) \qquad \text{use of } \sum x^2 P(X = x)$ and at least 2 prob correct	M1 A1	
	$Var(X) = \frac{266}{17} - \left(\frac{64}{17}\right)^2$	use of $\sum x^2 P(X = x)$ -	M1	
	$(E(X))^2 = 1.4740$	awrt 1.47	AI	(4)
(d)	Var $(4 - 3X) = 9$ Var $(X) = 9 \times 1.47 = 13.23 \implies 13.2$ or $9 \times 1.4740 = 13.266 \implies 13$	cao 9 Var <i>X</i>	M1 A1	(2)

6(a)	<i>M</i> ~ N(155, 3	3.5 ²)						
	P(<i>M</i> > 160)	$= P\left(z > \frac{160}{3}\right)$	$\left(\frac{155}{5}\right)$		standardising $\pm (160 - 155)$, σ , σ^2 , $\sqrt{\sigma}$		M1	
	:	= P(z > 1.43)	<i>,</i>				A1	
		= 0.0764					A1	(3)
(b)	$P(150 \le M \le$	(157) = P(-1.4) = 0.7157	$3 \le z \le 0.57$) z = (1 - 0.9236)		awrt -1.43, 0. p>0.5	57	B1 B1 M1	
	special case :	= 0.6393 answer only B	0 B0 M1 A1		0.6393 - 0.6400	4dp	A1	(4)
(c)	$P(M \le m) = 0$	$0.3 \Rightarrow \frac{m - 155}{3.5}$	= -0.5244		-0.5244 att stand = z value for A1 may use awrt to - 0.52.		B1 M1 A1	
		т	= 153.2		cac)	A1	(4)
7.		Glasses	No Glasses	Totals				
	Science Arts Humanities Totals	18 27 44 89	12 23 24 59	30 50 68 148	50 may be seen in 23 may be seen in	n (a) (b)	B1 B1	
(a)	$P(Arts) = \frac{50}{148}$	$\frac{25}{74} = 0.338$			a number.	/148	M1 A1	(4)
(b)	P(No glasses /	$(\text{Arts}) = \frac{\frac{23}{144}}{\frac{50}{144}}$	$\frac{8}{8} = \frac{23}{50} = 0.46$		$\frac{\text{prob}}{\text{their}(a)\text{prob}} \text{or} \frac{\text{number}}{\text{their}} 500$)	M1 A1	(2)
(c)	P(Right Hand	$ed) = \left(\frac{30}{148} \times 0\right)$	$8) + (\frac{50}{148} \times 0.7)$	$)+(rac{68}{148} imes 0)$.75) attempt add three 1 A1 $$ on their	prob r (a)	M1 A1 \	/
		$=\frac{55}{74}=0.74$	43		awrt 0.743		A1	(3)
(d)	P (Science /R	light handed) =	$=\frac{\frac{30}{148}\times0.8}{(c)}=\frac{1}{5}$	$\frac{2}{55} = 0.218$	on thei	ir (c)	M1 A1√	A1 (3)

6683 Statistics S1 June 2005 Advanced Subsidiary/Advanced Level in GCE Mathematics

January 2006

Question Number	Scheme			Marks	
1. (a)	Mode is 56			B1	(1)
(b)	$Q_1 = 35, Q_2 = 52, Q_3 = 60$		B1,B	1,B1	(3)
(c)	$\overline{x} = \frac{1335}{27} = 49.4$ or $49\frac{4}{9}$	exact or awrt 49.4	B1		
	$\sigma^2 = \frac{71801}{27} - \left(\frac{1335}{27}\right)^2 = 214.5432$		M1A ²	lft	
	$\sigma = 14.6 \text{ or } 14.9$	awrt 14.6(5) or 14.9		A1	(4)
(d)	$\frac{49.4-56}{14.6} = -0.448$	awrt range -0.44 to -0.46	M1A ²	1	(2)
(e)	For negative skew; Mean <median<mode ($49.4<52<56$ not required) 3 con <math>Q_3-Q_2<q_2-q_1< math=""> 8 and 17 Accept other valid reason eg. 3(mean-median)/sd as alt for</q_2-q_1<></math></median<mode 	2 compared correctly apared correctly M1A1	A1 M1 A1 ft Total	M1 14 marl	(4) ks
2. (a)	p + q = 0.4 2 $p + 4q = 1.3$	Consider with (b).	M1A ²	B1 I	(3)
(b)	Attempt to solve $p = 0.15, q = 0.25$	If both seen, award 3.	M1	A1A1	(3)
(C)	$E(X^{2}) = 1^{2} \times 0.10 + 2^{2} \times 0.15 + \dots + 5^{2} \times 0.30 = 14$ Var(X) = 14 - 3.5 ² = 1.75			M1A1ft M1A1	(4)
(d)	Var(3-2X) = 4Var(X) = 7.00		Total	M1A1ft 12 mar	(2) ks

January 2006

6683 Statistics 1 Mark Scheme

6683 Statistics 1 Mark Scheme

4 (2)	$\frac{8}{-}$ – Blue	
4. (d)	11	
	$\frac{9}{12}$ Blue	
	3	
	$\frac{3}{11}$ Red Tree	M1
	\leq	
	$\frac{9}{11}$ Blue $\frac{9}{12},\frac{3}{12}$	A1
	$\frac{3}{12}$ Red	
	12	
	$\frac{2}{11}$ Red Complete & labels	A1 (3)
	0 3 3 2 1	(0)
(b)	P(Second ball is red) = $\frac{7}{12} \times \frac{3}{11} + \frac{3}{12} \times \frac{2}{11} = \frac{1}{4}$	M1A1 (2)
	3 2	(2)
(C)	P(Both are red Second ball is red) = $\frac{\overline{12} \times \overline{11}}{1} = \frac{2}{11}$ exact or awrt 0.182	M1A 1
	$\frac{1}{4}$	(2) Total 7 marks
5. (a)	To simplify a real world problem	
	Quicker and cheaper than using real thing	
	l o predict possible future outcomes Refine model / change parameters possible Any 2	B1B1
(b)	(i) e.g.s height, weight (ii) score on a face after tossing a fair die	(2) B1B1
		(2) Total 4 marks

GCE Edexcel GCE Statistics S1 (6683)

June 2006

Mark Scheme (Results) advancing learning, changing lives

June 2006 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks
1(a)	Indicates max / median / min / upper quartile/ lower quartile (2 or more) Indicates outliers (or equivalent description) Illustrates skewness (or equivalent description e.g. shape) Any 3 rows Allows comparisons Indicates range / IQR / spread	B1 B1 B1
(b)(i) (ii)	37 (minutes) Upper quartile or Q_3 or third quartile or 75^{th} percentile or P_{75}	(3) B1 B1 (2)
(c)	Outlier s How to calculate correctly 'Observations that are very different from the other observations and need to be treated with caution' These two children probably walked / took a lot longer Any 2	B1 B1 (2)
(d)	0 0	
	Box & median & whiskers Sensible scale 30,37,50 25,55	M1 B1 B1 B1 (4)
(e)	Children from school A generally took less timeAny correct 4 lines50% of $B \le 37$ mins, 75% of $A < 37$ mins (similarly for 30)Median/Q1/Q3 of $A <$ median/Q1/Q3 of B (1 or more)A has outliers, (B does not)Both positive skewIQR of $A <$ IQR of B , range of $A >$ range of B	B1 B1 B1 B1 (4)
		Total 15

Question Number	Scheme	Marks
2. (a)	P(both longer than 24.5)= $\frac{11}{55} \times \frac{10}{54} = \frac{1}{27}$ or $0.0\dot{3}\dot{7}$ or 0.037 2 fracs x w/o rep. awrt 0.037	M1A1
(b)	Estimate of mean time spent on their conversations is $\overline{x} = \frac{1060}{55} = 19\frac{3}{11}$ or $19.\dot{2}\dot{7}$ or 19.3 1060/total, awrt 19.3 or 19mins 16s	(2) M1A1 (2)
(c)	$\frac{1060 + \sum fy}{80} = 21$ 21x80=1680 21x80=1680 Subtracting 'their 1060'	(2) B1 M1
	$\therefore \overline{y} = \frac{620}{25} = 24.8$ Dividing their 620 by 25	M1A1
(d)	25 Increase in mean value. Length of conversations increased considerably	(4) B1
	during 25 weeks relative to 55 weeks context - ft only from comment above	B1 ∫ (2)
		Total 10
3. (a)	$\sum x = \sum t = 337.1$, $\sum y = 16.28$ Can be implied	B1,B1
	$S_{xy} = 757.467 - \frac{337.1 \times 16.28}{8} = 71.4685$ either method, awrt 71.5	M1A1
	$S_{xx} = 15965.01 - \frac{337.1^2}{8} = 1760.45875$ awrt 1760	A1
(b) M1A1	$b = \frac{71.4685}{1760.45875} = 0.04059652$ / correct way up, awrt 0.0406	
	$a = \frac{16.28}{8} - b \times \frac{337.1}{8} = 0.324364$ using correct formula, awrt 0.324	M1A1
	y = 0.324 + 0.0406x 3 sf or better but award for copying from above	A1 ∫ (5)
(c)	At $t = 40$, $x = 40$, $y = 1.948$, $l = 2461.948$ sub x=40, awrt 1.95, awrt 2461.95	M1A1A1 ∫
(d) A1	l - 2460 = 0.324 + 0.0406t LHS required l = 2460.324 + 0.0406t awrt 2460.32, f.t. their 0.0406, / and	(3) M1
(e)	At $t = 90$, $l = 2463.978$ awrt 2464	(2) B1 (1)
(f)	90°C outside range of data unlikely to be reliable	B1

Mark Scheme (Results) January 2007

GCE Mathematics

Statistics (6683)

January 2007 6683 Statistics S1 Mark Scheme

Question number	Scheme	Marks	8
1. (a)	(£) 17 Just <u>17</u>	B1	(1)
(b)	$\sum t = 212$ and $\sum m = 61$ (Accept as totals under each column in qu.)	B1, B1	
	$S_{tm} = 2485 - \frac{61 \times 212}{10}$, = 1191.8 awrt <u>1190</u> or 119 (3sf)	M1, A1	
	$S_{tt} = 983.6 \text{ (awrt 984)} \text{ and } S_{mm} = 1728.9 \text{ (awrt 1730)} \text{ (or 98.4 and 173)}$	A1, A1	(6)
(c)	$r = \frac{1191.8}{\sqrt{983.6 \times 1728.9}}$	M1, A1f.t.	
	= 0.913922 awrt <u>0.914</u>	A1	(3)
(d)	0.914 (Must be the same as (c) or awrt 0.914)	B1f.t. ($ r <$	1)
	e.g. linear transformation, coding does not affect coefficient (or recalculate)	dB1	(2)
(e)	0.914 suggests longer spent shopping the more spent. (Idea more time, more spent) B1	
	0.178 different amounts spent for same time.	B1	(2)
(f)	e.g. might spend short time buying 1 expensive item <u>OR</u> might spend a long time		
	checking for bargains, talking, buying lots of cheap items.	B1g	(1)
		15 m	arks
(b)	M1 for one correct formula seen, f.t. their $\sum t$, $\sum m$ [Use 1 st A1 for 1 correct, $\sum t$]	2^{nd} A1 for 2 e	etc]
(c)	M1 for attempt at correct formula, $\frac{2485}{\sqrt{2101 \times 5478}}$ scores M1A0A0		
	A1ft f.t. their values for S_{tt} etc from (b) but don't give for $S_{tt} = 5478$ etc (see all	oove)	
	Answer only (awrt 0.914) scores 3/3, 0.913 (i.e. truncation) can score M1A1ft by i	implication.	
(d)	2 nd B1 dependent on 1 st B1 Accept $\sum m = 261, \sum m^2 = 8541, \sum tm = 6725 \rightarrow 0.9$	914	
(e)	One mark for a sensible comment relating to each coefficient		
	For 0.178 allow "little or no link between time and amount spent". Must b	e in context.	
	Just saying 0.914 is strong +ve correlation between amount spent and time	shopping and	d
	0.178 is weak correlation scores B0B0.		
(f)	B1g for a sensible, practical suggestion showing that other factors might affect t	the amount s	pent.
	E.g. different day (weekend vs weekday) or time of day (time spent queuin	g if busy)	

Question number	Scheme		Marks
2. (a)	$A \xrightarrow{0.03} D (0.0105)$	Correct tree shape	M1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	and <i>C</i> and 0.35 and 0.25	A1
	aggregation 0.25 B $bgggggggggggggggggggggggggggggggggggg$	3) and 0.03, 0.06, 0.05	A1 (3)
		be implied by seeing	
	0.05 D (0.02) P(A)	$\cap D$) etc at the ends)	
	$\sim c <$		
	\overline{D}		
(b)(i)	$P(A \cap D) = 0.35 \times 0.03$, $= 0.0105 \text{ or } \frac{21}{2000}$		M1, A1
		P(C) = 0.4 (anywhere)	B1
(ii)	$P(D) = (i) + 0.25x \ 0.06 + (0.4x \ 0.05)$		M1
	$=$ <u>0.0455</u> or $\frac{91}{2000}$		A1 (5)
(c)	$P(C D) = \frac{P(C \cap D)}{D}, = \frac{0.4 \times 0.05}{D}$		M1, A1ft
	P(D) (ii)		
	$= 0.43956 \text{ or } \frac{40}{91}$	<u>0.44</u> or awrt <u>0.440</u>	A1 (3)
	[Correct answers only score full marks in each par	rt]	11 marks
(a)	M1 for tree diagram, 3 branches and then two from ea	ch. At least one probabil	ity attempted.
(b)	1 st M1 for 0.35x0.03. Allow for equivalent from <u>their tree</u>	ee diagram <u>.</u>	
	B1 for $P(C) = 0.4$, can be in correct place on tree diag	gram or implied by 0.4×0.4	05 in P(D).
	2 nd M1 for all 3 cases attempted and <u>some</u> correct probab.	ilities seen, including +. ∇	Can it their tree.
	Condone poor use of notation in correct calculation	ns seen. E.g. $P(U \mid D)$ for	$P(C \cap D)$.
	M1 for attempting correct famula. If no correct formula	e must be an allempt to su	oore MO
	Writing $P(D C)$ and attempting to find this is M0		
	Writing $P(D C)$ but calculating correct ratio – igno	ore notation and mark rati	08.
	A1ft must have their 0.4×0.05 divided by their (ii).		05.
	If ratio is incorrect ft $(0/3)$ unless correct formula	seen and part of ratio is co	orrect then M1.
		-	

Question number	Scheme	Marks
3. (a)	N.B. Part (a) doesn't have to be in a table, could be a list $P(X = 1) = \dots$ etc	B1, B1, B1
	x 1 2 3 4 5 6	
	$P(K) = \frac{1}{2} + \frac{3}{2} + \frac{5}{2} + \frac{7}{2} + \frac{9}{2} + \frac{11}{11}$	
	P(X = x) 36 36 36 36 36 36 36	
	0.0278, 0.0833, 0.139, 0.194, 0.25, 0.306 (Accept awrt 3 s.f)	(3)
(b)	$P(3) + P(4) + P(5) =, \frac{21}{36} \text{ or } \frac{7}{12} \text{ or awrt } 0.583$	M1, A1 (2)
(c)	$E(X) = \frac{1}{36} + 2 \times \frac{3}{36} + \dots, = \frac{161}{36} \text{ or } 4.472 \text{ or } 4\frac{17}{36}$	M1, A1 (2)
(d)	$E(X^{2}) = \frac{1}{36} + 2^{2} \times \frac{3}{36} + \dots, = \frac{791}{36} \text{ or full expression or } 21\frac{35}{36} \text{ or awrt } 21.97$	M1, A1
	$Var(X) = \frac{791}{36} - \left(\frac{161}{36}\right)^2$, = <u>1.9714*</u>	M1, A1c.s.o. (4)
(e)	$Var(2-3X) = 9 \times 1.97$ or $(-3)^2 \times 1.97$, = 17.73 awrt <u>17.7</u> or $\frac{2555}{144}$	M1, A1 (2)
		13 marks
(a)	1 st B1 for $x = 1,, 6$ and at least one correct probability N.B. $\frac{3}{36} = \frac{1}{12}$ and $\frac{9}{36} = \frac{1}{2}$	<u>L</u> 4
	2 nd B1 for at least 3 correct probabilities	
	3 rd B1 for a fully correct probability distribution.	
(b)	M1 for attempt to add the correct three probabilities, ft their probability distrib	ution
(c)	M1 for a correct attempt at $E(X)$. Minimum is as printed. Exact answer only s	cores M1A1.
	[Division by 6 at any point scores M0, no ISW. Non-exact answers with no work	ing score M0.]
(d)	1 st M1 for a correct attempt at E(X ²). Minimum as printed. $\frac{791}{36}$ or awrt 21.97 so	cores M1A1.
	2^{nd} M1 for their $E(X^2) - (\text{their } E(X))^2$.	
	2^{nd} A1 cso needs awrt 1.97 and $\frac{791}{36} - \left(\frac{161}{36}\right)^2$ or $\frac{2555}{1296}$ or any fully correct expre	ssion seen.
	Can accept <u>at least 4 sf</u> for both. i.e. 21.97 for $\frac{791}{36}$, 4.472 for $\frac{161}{36}$, 20.00 for $\left(\frac{1}{36}\right)$	$\left(\frac{61}{36}\right)^2$.
(e)	M1 for correct use of $Var(aX + b)$ formula or a <u>full</u> method.	
	NB $-3^2 \times 1.97$ followed by awrt 17.7 scores M1A1 <u>BUT</u> $-3^2 \times 1.97$ alone, or the second state of the	followed by
	– 17.7, scores M0A0.	

Question number	Scheme	Marks
4. (a)	Positive skew (both bits)	B1 (1)
(b)	$19.5 + \frac{(60-29)}{43} \times 10, = 26.7093$ awrt <u>26.7</u>	M1, A1 (2)
	(N.B. Use of 60.5 gives 26.825 so allow awrt 26.8) 3550	
(c)	$\mu = \frac{1000}{120} = 29.5833$ or $29\frac{1}{12}$ awrt 29.6	B1
	$\sigma^2 = \frac{138020}{120} - \mu^2$ or $\sigma = \sqrt{\frac{138020}{120}} - \mu^2$	M1
	$\sigma = 16.5829$ or (s = 16.652) awrt <u>16.6</u> (or s = 16.7)	A1 (3)
(d)	$\frac{3(29.6 - 26.7)}{16.6}$	M1A1ft
	= 0.52	A1 (3)
(e)	0.520 > 0correct statement about their (d) being >0 or < 0	B1ft dB1ft (2)
(f)	Use <u>Median</u> Since the data is skewed <u>or</u> less affected by outliers/extreme values	B1 dB1 (2)
(g)	If the data are <u>symmetrical</u> or <u>skewness is zero</u> or <u>normal/uniform distribution</u> ("mean =median" or "no outliers" or "evenly distributed" all score B0)	B1 (1) 14 marks
(b)	M1 for $(19.5 \text{ or } 20) + \frac{(60-29)}{43} \times 10$ or better. Allow 60.5 giving awrt 26.8 for Allow their $0.5n$ [or $0.5(n+1)$] instead of 60 [or 60.5] for M1.	M1A1
(c)	M1 for a correct expression for σ, σ^2, s or s^2 . NB $\sigma^2 = 274.99$ and $s^2 = 277.30$ Condone poor notation if answer is awrt16.6 (or 16.7 for <i>s</i>))
(d)	M1 for attempt to use this formula using their values to any accuracy. Condone 1^{st} A1ft for using their values to at least 3sf. Must have the 3. 2^{nd} A1 for using accurate enough values to get awrt 0.520 (or 0.518 if using <i>s</i>) NB Using only 3 sf gives 0.524 and scores M1A1A0	e missing 3.
(e)	 1st B1 for saying or implying correct sign for their (d). B1g and B1ft. Ignore "co 2nd B1 for a comment about consistency with their (d) and (a) being positive skew This is dependent on 1st B1: so if (d)>0, they say yes, if (d)<0 they say no. 	rrelation" if seen. , ft their (d) only
(f)	2 nd B1 is dependent upon choosing median.	

Question number	Scheme	Mar	'ks
5. (a)	Time is a <u>continuous</u> variable <u>or</u> data is in a <u>grouped</u> frequency table	B1	(1)
(b)	Area is proportional to frequency or $A \propto f$ or $A = kf$	B1	(1)
(c)	$3.6 \times 2 = 0.8 \times 9$	M1 dM1	
	1 child represented by 0.8	A1 cso	(3)
(d)	$(Total) = \frac{24}{0.8}, = \underline{30}$	M1, A1	(2)
		7 n	narks
(b)	 1st B1 for one of these correct statements. "Area proportional to frequency density" or "Area = frequency" is B0 		
(c)	1 st M1 for a correct combination of any 2 of the 4 numbers: 3.6, 2, 0.8 and 9		
	e.g. 3.6×2 or $\frac{3.6}{0.8}$ or $\frac{0.8}{2}$ etc BUT e.g. $\frac{3.6}{2}$ is M0		
	2 nd M1 dependent on 1 st M1 and for a correct combination of 3 numbers leading to	$> 4^{\text{th}}$.	
	May be in separate stages but must see all 4 numbers		
	A1cso for fully correct solution. Both Ms scored, no false working seen and <u>comm</u>	ment requir	red.
(d)	M1 for $\frac{24}{0.8}$ seen or implied.		

Question number		Scheme	Marks
6. (a)	Used to simpl Cheaper <u>or</u> qu To improve u Used to predi	lify <u>or</u> represent a real world problem nicker <u>or</u> easier (than the real situation) <u>or</u> more easily modified nderstanding of the real world problem ct outcomes from a real world problem (idea of predictions)	(any two lines) B1 B1 (2)
(b)	(3 or 4)	Model used to make predictions. (Idea of predicted values based on the model)	B1
	(4 or 3)	(Experimental) data collected	B1
	(7)	Model is refined.	B1 (3) 5 marks
(a)	1 st B1 For or	ne line	
	2 nd B1 For a	second line	
	Be get	nerous for 1 st B1 but stricter for B1B1	
(b)	1 st & 2 nd B1	These two points can be interchanged. Idea of values from (experimental) data and predicted values based	on the model.
	1 st B1 for pre	edicted values from model e.g. "model used to gain suitable data"	
	2^{nd} B1 for dat	ta collected. Idea of experimental data but "experiment" needn't be e	explicitly seen
	3 rd B1	This should be stage 7. Idea of refinement or revision or adjustmen	ıt

Question number	Scheme	Marks
7. (a)	$P(X < 91) = P(Z < \frac{91 - 100}{15})$ Attempt standardisation	M1
	= P(Z < -0.6)	A1
	= 1 - 0.7257	M1
	= 0.2743 awrt <u>0.274</u>	A1 (4)
(b)	1 - 0.2090 = 0.7910 0.791	B1
	P(X > 100+k) = 0.2090 or $P(X < 100+k) = 0.7910$ (May be implied)	M1
	Use of tables to get $z = 0.81$	B1
	$\frac{100 + k - 100}{15}$,=0.81 (ft their z = 0.81, but must be z not prob.)	M1, A1ft
	k = 12	A1 cao (6)
		10 marks
	σ or σ^2 1 st A1 for -0.6 (or +0.6 if using 109) 2 nd M1 for 1 – probability from tables. Probability should be > 0.5)	
(b)	1 st B1 for 0.791 seen or implied.	
	1^{st} M1 for a correct probability statement, but must use X or Z correctly. Shown o	n diagram is OK
	2 nd B1 for awrt 0.81 seen (or implied by correct answer - see below) (Calculator g	ives 0.80989)
	2^{nd} M1 for attempting to standardise e.g. $\frac{100 + k - 100}{15}$ or $\frac{k}{15}$	
	$\frac{X-100}{15}$ scores 2 nd M0 until the 100+ k is substituted to give k, but may imply 1 st M3	l if <i>k</i> = 112.15 seen
	1 st A1ft for correct equation for k (as written or better). Can be implied by $k = 12$	2.15 (or better)
	2^{nd}A1 for $k = 12$ only.	
	Answers only	
	k = 112 or 112.15 or better scores 3/6 (on EPEN give first 5 marks) k = 12.15 or better (coloulator gives 12.148428) scores 5/6 (i.e. losse last	A 1 amly)
	k = 12.15 or better (calculator gives 12.148438) scores 5/6 (i.e loses last A1 only)	
NB	K = 12 (no incontect working seen) scores $0/0Using 0.7010 instead of 0.81 gives 11.865 which might be rounded to 12. This sk$	ould coore no
	more than R1M1R0M1A0A0	
	more than B1M1B0M1A0A0.	

7

PMT

Mark Scheme (Results) Summer 2007

GCE

GCE Mathematics

Statistics S1 (6681)

June 2007 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} = \frac{-808.917}{\sqrt{113573 \times 8.657}}$ $= -0.81579$	M1 A1 (2)
(b) (c)	Houses are <u>cheaper</u> further away from the station or equivalent statement B1 -0.816	(1) B1J (1) Total 4 marks
Notes:		
1(a)	M1 for knowing formula and clear attempt to sub in correct values from question. Root required for method. Anything that rounds to -0.82 for A1. Correct answer with no working award 2/2	
(b)	Context based on negative correlation only required. Accept <u>Houses</u> are <u>more expensive</u> closer to the <u>station</u> or equivalent statement. Require 'house prices' or 'station' and a clear correct comparison.	
(c)	Accept anything that rounds to -0.82 or 'the same' or 'unchanged' or equivalent. Award B1 if value quoted same as answer to (a).	

PMT

Question Number	Scheme	Marks
2(a)	$\frac{1}{2}$	B1
(b)	54	(1) B1
(c)	+ is an 'outlier' or 'extreme value'Any heavy musical instrument or a statement that the instrument is heavyB1	(1) B1
(d)	$Q_3 - Q_2 = Q_2 - Q_1$ so symmetrical or no skew Dependent – only award if B1 ab	B1
(e)	P(W < 54) = 0.75 (or $P(W > 54) = 0.25$)or correctly labelled and shaded diag	B1 (2) ram M1
	$\frac{54-45}{\sigma} = 0.67$ $\sigma = 13.43$	M1B1 A1 (4)
	Т	otal 10 marks
Notes 2(a) (b) (c)	Accept 50% or half or 0.5. Units not required. Correct answer only. Units not required. 'Anomaly' only award B0	
	Accept '85kg was heaviest instrument on the trip' or equivalent for second B1. Examples of common acceptable instruments; double bass, cello, harp, piano, drums, tuba Examples of common unacceptable instruments: violin, viola, trombone, trumpet, french h	orn, guitar
(d)	'Quartiles equidistant from median' or equivalent award B1 then symmetrical or no skew for B1 Alternative: 'Positive tail is longer than negative tail' or 'median closer to lowest value' or equivalent so slight positive skew. B0 for 'evenly' etc. instead of 'symmetrical' B0 for 'normal' only	
(e)	Please note that B mark appears first on ePEN First line might be missing so first M1 can be implied by second. Second M1 for standardising with sigma and equating to z value NB Using 0.7734 should not be awarded second M1 Anything which rounds to 0.67 for B1. Accept 0.675 if to 3sf obtained by interpolation Anything that rounds to 13.3 – 13.4 for A1.	

3(a)	Use overlay	B2 (2)
(b)	$S_{xy} = 28750 - \frac{315 \times 620}{8} = 4337.5$ **answer given** so award for method	M1
	$S_{xx} = 15225 - \frac{315^2}{8} = 2821.875$	M1A1
	4377.5	(3)
(c)	$b = \frac{1.537}{S_{xx}}, = 1.537 = 1.5$	M1,A1
	$a = \overline{y} - b\overline{x} = \frac{620}{8} - b\frac{315}{8} = 16.97 = 17.0$	M1,A1
(d)	Use overlay	(4) B1∫ B1
(e)	Brand D, since a long way above / from the line dependent upon 'Brand D' above	(2) B1
	Using line: $y = 17 + 35 \times 1.5 = 69.5$	M1A1
	Т	otal 15 marks
Notes:		
3(a)	Points B2, within 1 small square of correct point, subtract 1 mark each error minimum 0.	
(b)	Anything that rounds to 2820 for A1	
(c)	Anything that rounds to 1.5 and 17.0 (accept 17)	
(d)	Follow through for the intercept for first B1 Correct slope of straight line for second B1.	
(e)	Anything that rounds to 69p-71p for final A1. Reading from graph is acceptable for M1A1. If value read from graph at $x = 35$ is answer given but out of range, then award M1A0.	

5(a)	18-25 group, area=7x5=35 25-40 group, area=15x1=15		B1 B1 (2)
(b)	(25-20)x5+(40-25)x1=40		M1A1 (2)
(c)	Mid points are 7.5, 12, 16, 21.5, 32.5 $\sum f = 100$	M1	B1
	$\frac{\sum_{i=1}^{n} ft}{\sum_{i=1}^{n} f} = \frac{1891}{100} = 18.91$		M1A1
(d)	$\sigma_t = \sqrt{\frac{41033}{122} - \overline{t}^2} \qquad \qquad \sqrt{\frac{n}{122} \left(\frac{41033}{122} - \overline{t}^2\right)} \text{ alternative OK}$		(4) M1
	$\sigma = \sqrt{52.74} = 7.26$		M1 A1
(e)	$Q_2 = 18$ or 18.1 if (n+1) used		(3) B1
	$Q_1 = 10 + \frac{15}{16} \times 4 = 13.75$ or 15.25 numerator gives 13.8125		M1A1
	$Q_3 = 18 + \frac{25}{35} \times 7 = 23$ or 25.75 numerator gives 23.15	A1	(4)
(f)	0.376 Positive skew		B1 B1∫ (2)
		Total 17	7 marks
Notes: 5(b)	5x5 is enough evidence of method for M1. Condone 19.5, 20.5 instead of 20 etc. Award 2 if 40 seen		
(c)	Look for working for this question in part (d) too. Use of some mid-points, at least 3 correct for M1. These may be tabulated in (d). $\sum ft$		
	Their $\frac{\sum n}{\sum f}$ for M1 and anything that rounds to 18.9 for A1.		
(d)	Clear attempt at $\frac{41033}{100} - \overline{t}^2$ or $\frac{n}{n-1} \left(\frac{41033}{100} - \overline{t}^2\right)$ alternative for first M1.		
	Square root of above for second M1 Anything that rounds to 7.3 for A1.		
(e)	Clear attempt at either quartile for M1 These will take the form 'their lower limit'+ correct fraction x 'their class width'. Anything that rounds to 13.8 for lower quartile.		
(f)	23 or anything that rounds to 23.2 dependent upon method used. Anything that rounds to 0.38 for B1 or 0.33 for B1 if (n+1) used. Correct answer or correct statement that follows from their value for B1.		

6(a) (b)	$P(X > 25) = P\left(Z > \frac{25 - 20}{4}\right)$ = P(Z > 1.25) = 1 - 0.8944 = 0.1056 $P(X < 20) = 0.5 \text{ so } P(X < d) = 0.5 + 0.4641 = 0.9641$ $P(Z < z) = 0.9641, z = 1.80$ $\frac{d - 20}{4} = 1.80$ $d = 27.2$	M1 M1 A1 (3) B1 B1 M1 A1 (4) Total 7 marks
Notes:		
(a)	Standardise with 20 and 4 for M1, allow numerator 20-25 1- probability for second M1 Anything that rounds to 0.106 for A1. Correct answer with no working award 3/3	
(b)	0.9641 seen or implied by 1.80 for B1 1.80 seen for B1 Standardise with 20 and 4 and equate to z value for M1 Z=0.8315 is M0 Anything that rounds to 27.2 for final A1. Correct answer with no working 4/4	

7(a)	p+q = 0.45 . $\sum x P(X = x) = 4.5$ 3p+7q = 1.95	B1 M1 A1
(b)	Attempt to solveequations in (a) $q = 0.15$ $p = 0.30$	(3) M1 A1 A1 (3)
(c)	P(4 < X < 7) = P(5) + P(7) = 0.2 + q = 0.35	$ \begin{array}{c} (3) \\ M1 \\ A1 \end{bmatrix} $
(d)	$Var(X) = E(X^{2}) - [E(X)]^{2} = 27.4 - 4.5^{2}$ = 7.15	M1 A1 (2)
(e)	$E(19-4X) = 19-4 \times 4.5 = 1$	B1 (1)
(f)	Var(19-4X) = 16Var(X) = 16×7.15 = 114.4	(1) M1 A1 (2) Fotal 13 marks
Notes:		
7(a)	0.55 + p + q = 1 award B1. Not seen award B0. 0.2 + 3p + 1 + 7q + 1.35 = 4.5 or equivalent award M1A1 3p + 7q + k = 4.5 award M1.	
(b)	Attempt to solve must involve 2 linear equations in 2 unknowns Correct answers only for accuracy. Correct answers with no working award 3/3	
(c)	Follow through accuracy mark for their q , $0 < q < 0.8$	
(d)	Attempt to substitute <u>given</u> values <u>only</u> into correct formula for M1. 7.15 only for A1 7.15 seen award 2/2	
(f)	Accept 'invisible brackets' i.e. -4^2 Var (X) provided answer positive. Anything that rounds to 114 for A1.	

Mark Scheme (Results) January 2008

GCE

GCE Mathematics (6683/01)

January 2008 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Ма	rks
1. (a) (b)	$\sum x = 773, \sum y = 724$ $r = \frac{10 \times 56076 - 773 \times 724}{\sqrt{(10 \times 60475 - 773^2)(10 \times 53122 - 724^2)}}$ o.e. r = 0.155357 Both weak correlation Neither score is a good indication of future performance Interview test is slightly better since correlation is positive	B1, B1 M1 A1ft A1 B1g B1h	(5) (2)
 NB	$S_{xx} = 60475 - \frac{(773)^2}{10} = 722.1, \ S_{yy} = 53122 - \frac{(724)^2}{10} = 704.4, \ S_{xy} = 56076 - \frac{773 \times 724}{10} = 110.8$		
(a)	 1st B1 for ∑x and 2nd B1 for ∑y, should be seen or implied. M1 for at least one correct attempt at one of S_{xx}, S_{yy} or S_{xy} and then using in the correct formula 1st A1ft for a fully correct expression. (ft their Σx and their Σy) or 3 correct expressions for S_{xx}, S_{xy}, and S_{yy} but possibly incorrect values for these placed correctly in <i>r</i>. 2nd A1 for awrt 0.155 		
(b)	If $ r > 0.5$ they can score B1g in (b) for saying that it (skills test) is not a good guide to performance but B0h since a second acceptable comment about both tests is not possible. Give B1 for one correct line, B1B1 for any 2. If the only comment is the test(s) <u>are</u> a good guide: scores B0B0 If the only comment is the tests are not good: scores B1B0 (second line) The third line is for a comment that suggests that the interview test is OK but the skills test is not since one is positive and the other is negative. Treat 1 st B1 as B1g and 2 nd as B1h An answer of "no" alone scores B0B0		
	An answer of "no" alone scores B0B0		

Question Number	Scheme	Marks									
2. (a)	mean is $\frac{2757}{12}$, = 229.75 AWRT 230	M1, A1									
	sd is $\sqrt{\frac{724961}{12} - (229.75)^2}$, = 87.34045 AWRT 87.3 [Accept s = AWRT 91.2]	M1, A1									
(b)	Ordered list is: 125, 160, 169, 171, 175, 186, 210, 243, 250, 258, 390, 420 $Q_2 = \frac{1}{2}(186 + 210) = 198$ $Q_1 = \frac{1}{2}(169 + 171) = 170$ $Q_3 = \frac{1}{2}(250 + 258) = 254$	(4) B1 B1 B1									
(c)	$Q_3 + 1.5(Q_3 - Q_1) = 254 + 1.5(254 - 170), = 380$ Accept AWRT (370-392) Patients <i>F</i> (420) and <i>B</i> (390) are outliers.	(3) M1, A1 B1ft B1ft (4)									
(d)	$\frac{Q_1 - 2Q_2 + Q_3}{Q_3 - Q_1} = \frac{170 - 2 \times 198 + 254}{254 - 170}, = 0.3$ AWRT 0.33 Positive skew.	(4) M1, A1 A1ft (3) Total 14 marks									
(a)	1 st M1 for using $\frac{\sum x}{n}$ with a credible numerator and $n = 12$.										
NB	Use of $s = \sqrt{8321.84} = 91.22$ is OK for M1A1 here. Answers only from a calculator in (a) can score full marks										
(b)	1 st B1 for median= 198 only, 2 nd B1 for lower quartile 3 rd B1 for upper quartile										
S.C.	If all Q_1 and Q_3 are incorrect but an ordered list (with ≥ 6 correctly placed) is seen and used then award B0B1 as a special case for these last two marks.										
(c)	M1 for a clear attempt using their quartiles in given formula, A1 for any value in the range $370 - 392$ 1 st B1ft for any one correct decision about <i>B</i> or <i>F</i> - ft their limit in range (258, 420) 2 nd B1ft for correct decision about both <i>F</i> and <i>B</i> - ft their limit in range (258, 420) If more points are given score B0 here for the second B mark.										
(d)	$ \begin{array}{ll} \text{M1} & \text{for an attempt to use their figures in the correct formula - must be seen} \\ (\geq 2 \text{ correct substitutions}) \\ 1^{\text{st}} \text{ A1} & \text{for AWRT 0.33} \\ 2^{\text{nd}} \text{ A1ft} & \text{for positive skew. Follow through their value/sign of skewness .} \\ \text{Ignore any further calculations.} \\ & \text{"positive correlation" scores A0} \end{array} $										
3.											
------	---	------------------------	----------------------	-----------------------	--------------------------	-----------	---------------	----------	--------------------	-----------------	----------------
	Width	1	1	4	2	3	5	3	12		M1
	Freq. Density	6	7	2	6	5.5	2	1.5	0.5		A 1
							0.	.5 × 12	or 6		AI
	Total area is (1×	6)+(1×	7)+(4)	×2)+	.,=70						
	$(90.5-78.5) \times \frac{1}{2}$	$\times \frac{140}{1}$									M1
	$^{\prime}$ their 70 $^{\prime}$								ere"	R1	
	Number of runne	rs is 12						o seen	any with		A1
											(5)
											l otal 5 marks
	1 st M1 for attemp	ot at wie	dth of th	ne corre	ct bar (90.5 - 7	8.5)				
	[Maybe o]	n histog	gram or	in table	e] tha his	togram	Must	bo rolat	ad to th	o oroo	
	of the bar	above '	111ay be 78.5 - 9	0.5.		logram	wiust	De Telat		ie area	
	2 nd M1 for attem	oting ar	ea of co	rrect ba	$r \times \frac{14}{14}$	0					
1	\mathbf{D}_{1} for \mathbf{T}_{0} and		h	41	their	: 70					
 	$2^{nd} A1$ for correc	t answe	r of 12.	then w	JIKIIIg						
	Minimum workin	ng requi	red is 2	$2 \times 0.5 \times$	12 whe	re the 2	2 should	d come	from $\frac{1}{2}$	$\frac{40}{10}$	
	Beware 90.5 - 78	.5 = 12	(this sc	ores M	1A0M0	B0A0)			/	0	
	Common answer	ic 0.5	12 - 6	(this so	orac M1		2010)				
	Common answer	18 0.3 ×	12 - 0	(uns sec	ЛС5 IVI I	AINIUI	J UAU)				
	If unsure send to	review	e.g. 2 ×	(0.5×1)	12=12 v	vithout '	70 bein	g seen			

4.										
(a)		<i>S</i> _{<i>xy</i>} =	$=1818.5 - \frac{41 \times 406}{10}, =153.9$	(could be seen in (b))	AWRT 154	M1, A1				
		<i>S</i> _{xx} =	$=188 - \frac{41^2}{10} = 19.9$	(could be seen in (b))		A1				
(b)		$b = \frac{1}{2}$	1 <u>53.9</u> .=7.733668		AWRT 7.73	M1. A1	(3)			
(-)		-	19.9			,				
		a = 2	$40.6 - b \times 4.1 (= 8.89/96)$							
		y = c	8.89 + 1.13x			AI	(4)			
(c)		A typ	A typical car will travel 7700 miles every year							
(d)		r = 4	$5 v = 889 + 773 \times 5(=475 - 47)$	7 6)		M1	(1)			
(u)		So m	nileage predicted is $(-17.5)^{-1}$	AWRT 48000		A1				
		2011					(2)			
						Total 10 m	narks			
			Accept calculation	s for S and S in (a) or (b)						
				$S \operatorname{rot} S_{xx}$ and S_{xy} in (a) of (b)	,					
	(a)	M1	for correct attempt or expre	ession for either						
		$1^{st}A1$	for one correct							
		$2^{nd} A1$	for both correct							
	(b)	Ignore	the epen marks for part (b)	they should be awarded as	per this scheme					
			their S							
		1 st M1	for $\frac{\text{their } S_{xy}}{\text{their } S}$							
		1 st Δ1	for $\Delta WRT 7.73$							
		2^{nd} M1	for attempt at correct formu	ula for <i>a</i> (minus required). Ft	their b.					
			Quoting a correct formula b	out making one slip in sub.eg	$x_{v} = 406$ is OK					
		2 nd A1	for correct equation with 2d	lp accuracy.						
			Accept $a = 8.89$, and $b = 7$.	73 even if not written as fina	ll equation.					
		Correct	answers only (from calc) sco	ore 4/4 if correct to 2dp or 3	3/4 if AWRT 2dp					
	(c)	B1ft	for their $b \times 1000$ to at least	2 sf. Accept "7.7 thousand"	but value is needed	1				
	(d)	M1	for substituting $x = 5$ into the	neir final answer to (b).						
		A1	for AWRT 48000 (Accept '	"48 thousands")						
L		1				1				

5.	Diagram may be drawn with $B \subset (A \cup C)$ or with the 0 for $B \cap (A \cup C)'$ simply left blank						
(a)	Accept lecimals or probs. n Venn liagram	3cc 90,3,2,1 1,(0),2 1 outside Box	M1 A1 M1A1 A1 B1 (6)				
(b)	P(none)=0.01		B1ft				
(c)	P(<i>A</i> but not <i>B</i>)=0.04		M1 A1ft				
(d)	P(any wine but C)=0.03		(2) M1A1ft				
(e)	P(exactly two)=0.06		(2) M1A1ft (2)				
(f)	$P(C A) = \frac{P(C \cap A)}{P(A)} = \frac{93}{96}$ or $\frac{31}{32}$ or AWRT 0.969		M1A1ft,A1 (3)				
(a)	1st M1for 3 closed, labelled curves that overlap. A1 for the 90, 3, 2 and 12nd M1for one of 1, 0 or 2 correct or a correct sum of 4 values for A, B or C2nd A1for all 7 values correct. Accept a blank instead of 0.NB final mark is a B1 for the box not an A mark as on EPENIn parts (b) to (f) full marks can be scored for correct answers on	r correct ft	<u>Total 16 marks</u>				
(b) (c)	B1ft Follow through their '1' from outside divided by 100 M1 for correct expression eg $P(A \cup B) - P(B)$ or calculation e.g. 3 + 1	or 4 on top	For M marks in				
(d) (e)	 A1 for a correct probability, follow through with their '3+1' from diagra M1 for correct expression or calculation e.g. 1+2+0 or 99-96 or 3 on top A1 for a correct probability, follow through their '2+1+0' from diagram M1 for a correct expression or calculation e.g. 3+2+1 or 6 on top 	ım	(c) to (e) they must have a fraction				
(f)	M1 for a correct expression upto "," and <u>some</u> correct substitution, ft thei One of these probabilities must be correct or correct ft. If $P(C)$ on be 1 st A1ft follow through their $A \cap C$ and their A but the ratio must be in (0, 1 2 nd A1 for correct answer only. Answer only scores 3/3, but check working	r values. ottom M0 l) $P(A \cap C)/F$	P(C) is M0				

6. (a)	200 or 200g	B1 (1)
(b)	P(190 < X < 210) = 0.6 or $P(X < 210) = 0.8$ or $P(X > 210) = 0.2$ or diagram (o.e.) Correct use of 0.8 or 0.2	M1 A1
	$Z = (\pm) \frac{1}{\sigma}$	M1
	$\frac{10}{\sigma} = 0.8416$ 0.8416	B1
	$\sigma = 11.882129$ AWRT 11.9	A1
(c)	$P(X < 180) = P\left(Z < \frac{180 - 200}{\sigma}\right)$ = P(Z < -1.6832)	(5) M1
	=1-0.9535	M1
	= 0.0465 or AWRT 0.046	A1 (3) Total 9 marks
(a)	"mean = 200g" is B0 but "median = 200" or just "200" alone is B1	
	Standardization in (b) and (c). They must use σ not σ^2 or $\sqrt{\sigma}$.	
(b)	1^{st} M1for a correct probability statement (as given or eg P(200 <x<210)=0.3 o.e.)<br=""></x<210)=0.3> or shaded diagram - must have values on z-axis and probability areas shown 1^{st} A1for correct use of 0.8 or $p = 0.2$. Need a correct probability statement. May be implied by a suitable value for z seen (e.g. $z = 0.84$) 2^{nd} M1for attempting to standardise. Values for x and μ used in formula. Don't need $z =$ for this M1 nor a z-value, just mark standardization.B1for $z = 0.8416$ (or better) [$z = 0.84$ usually just loses this mark in (a)] 2^{nd} A1for AWRT 11.9	
(c)	1 st M1 for attempting to Standardise with 200 and their sd(>0) e.g. $(\pm)\frac{180-200}{\text{their }\sigma}$	
	 2nd M1 NB on epen this is an A mark ignore and treat it as 2nd M1 for 1 – a probability from tables provided compatible with their probability statement. A1 for 0.0465 or AWRT 0.046 (Dependent on both Ms in part (c)) 	

PMT

7.(a)	P(R=3)	$\bigcap B = 0) = \frac{1}{4} \times \frac{1}{4}$	$\frac{1}{4},=\frac{1}{16}$					M1, A1	(2)
(b)							1		(-)
		3	0	3	6	9			
		2	0	2	4	6			
		1	0	1	2	3	All 0s All 1,2,3s All 4,6,9s	B1 B1 B1	
		0	0	0	0	0			(3)
		B R	0	1	2	3			
(c)	$a = \frac{7}{16}, b$	$p = c = d = \frac{1}{16}$						B1, B1 I	B1
	10				,				(3)
(d)	E(<i>T</i>) =	$= \left(1 \times \frac{1}{16}\right) + \left(2 \times \frac{1}{16}\right)$	$\left(\frac{1}{8}\right) + \left(3\right)$	$\times \frac{1}{8} + \left(4\right)$	$\left(\times\frac{1}{16}\right)+.$			M1	
	=	$=2\frac{1}{4}$ or exact ϵ	quivalen	t e.g. 2.25	$5, \frac{9}{4}$			A1	
		4			4				(2)
(e)	$\operatorname{Var}(T)$ =	$= \left(1^2 \times \frac{1}{16}\right) + \left(2\right)$	$^2 \times \frac{1}{8} + ($	$\left(3^2 \times \frac{1}{8}\right)$ +	$+\left(4^2 \times \frac{1}{16}\right)$		$\left(\frac{9}{4}\right)^2$	M1A1,N	M1
	=	$=\frac{49}{4}-\frac{81}{16}=7\frac{3}{16}$	$-$ or $\frac{11}{10}$	$\frac{5}{2}$ (o.e	e.)		AWRT 7.19	A1	(4)
		4 16 16	5 10)				Total 14	marks
(a)	M1 fe	$r \frac{1}{2} \times \frac{1}{2}$							
(c)	1 st B1 fo	$r \frac{7}{16}$,							
	2^{nd} B1 f	for only one erro	r in <i>b, c,</i> .	d(b=c=	$= d \neq \frac{1}{16}$ o	or $b = c =$	$\frac{1}{16} \neq d$ etc), 3 rd B1 all of	b, c, d =	$\frac{1}{16}$
(d)	M1 fo	or attempting \sum	$t\mathbf{P}(T=t)$	t), 3 or m	ore terms	correct or	correct ft. Must Attemp	t to sum.	
	N N	IB calculating E	(T) and the T^2	en dividi	ng by a nu	mber oth	er than 1 scores M0.		
(e)	1° M1 fo	or attempt at E(2 49	1^{-2}), 3 or	more terr	ns correct	or correc	t tt.		
	$1^{st} A1$ for	or $\frac{4}{4}$ (o.e.) or a	fully cor	rect expre	ession (all	non-zero	terms must be seen)		
	2^{nd} M1 for	or subtracting the	eir $[E(T)]$	$]^2$, Must	be some a	ttempt to	square $-\frac{9}{4}$ is M0 but $-\frac{9}{10}$	$\frac{1}{5}$ could be	M1
	$\begin{vmatrix} 2^{nd} A1 & fc \\ F & F \end{vmatrix}$	or correct fractio	n or AW	RT 7.19 red in (d)	and (e) if	a is incorr	rect		

Mark Scheme (Results) June 2008

GCE Mathematics (6683/01)

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

A PEARSON COMPANY

June 2008 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks
Q1 (a)	0.95 Positive Test	
	0.02 Disease (0.05) Negative Test	
	(0.98) No Disease 0.03 Positive Test	
	(0.97) Negative Test	
	Tree without probabilities or labels 0.02(Disease), 0.95(Positive) on correct branches	M1 A1
	0.03(Positive) on correct branch.	A1
(b)	P(Positive Test) = $0.02 \times 0.95 + 0.98 \times 0.03$	[3] M1A1ft
	= 0.0484	A1
(c)	P(Do not have disease Postive test) = $\frac{0.98 \times 0.03}{0.0484}$ = 0.607438 awrt 0.607	[3] M1 A1
(d)	Test not very useful OR High probability of not having the disease for a person with a positive test	[2] B1 [1]
	Notec	Total 9
	(a) M1:All 6 branches. Bracketed probabilities not required. (b) M1 for sum of two products, at least one correct from their diagram A1ft follows from the probabilities on their tree A1 for correct answer only or $\frac{121}{2500}$ (c) M1 for conditional probability with numerator following from their tree and denominator their answer to part (b). A1 also for $\frac{147}{242}$.	

Question Number	Scheme	Mark	S
Q2 (a)	50	B1	[1]
(b)	$Q_1 = 45$ $Q_2 = 50.5$ ONLY $Q_3 = 63$	B1 B1 B1	[1]
(c)	Mean $=\frac{1469}{28} = 52.464286$ awrt 52.5	M1A1	[J]
	$Sd = \sqrt{\frac{81213}{28} - \left(\frac{1469}{28}\right)^2}$	M1	
(d)	=12.164 or 12.387216for divisor <i>n</i> -1 awrt 12.2 or 12.4 52.4650	A1	[4]
(e)	$\frac{1}{sd} = awrt \ 0.20 \text{ or } 0.21$	M1A1	[2]
	 2. Balmoral sd < Abbey sd or similar sd or correct comment from their values, Balmoral range<abbey range,<br="">Balmoral IQR>Abbey IQR or similar IQR</abbey> 3. Balmoral positive skew or almost symmetrical AND Abbey negative skew, Balmoral is less skew than Abbey or correct comment from their value in (d) 4. Balmoral residents generally older than Abbey residents or equivalent. Only one comment of each type max 3 marks 	B1B1B1	[[3]
	Notes:	101411	<u>,</u>
	 (c) M1for their 1469 between 1300 and 1600, divided by 28, A1 for awrt 52.5 Please note this is B1B1 on Epen M1 use of correct formula including sq root A1 awrt 12.2 or 12.4 Correct answers with no working award full marks. (d) M1 for their values correctly substituted A1 Accept 0.2 as a special case of awrt 0.20 with 0 missing (e) Technical terms required in correct context in lines 1 to 3 e.g. 'average' and 'spread' B0 1 correct comment B1B0B0 2 correct comments B1B1B1 		

Question Number	Scheme	Marks
Q3 (a) (b)	$-1 \times p + 1 \times 0.2 + 2 \times 0.15 + 3 \times 0.15 = 0.55$ $p = 0.4$ $p + q + 0.2 + 0.15 + 0.15 = 1$ $q = 0.1$ $Var(X) = (-1)^{2} \times p + 1^{2} \times 0.2 + 2^{2} \times 0.15 + 3^{2} \times 0.15, -0.55^{2}$ $= 2.55 - 0.3025 = 2.2475$ awrt 2.25	M1dM1 A1 M1 A1 [5] M1A1,M1 A1
(c)	E(2X-4) = 2E(X)-4 = -2.9	[4] M1 A1 [2]
	Notes: (a) M1 for at least 2 correct terms on LHS Division by constant e.g. 5 then M0 dM1 dependent on first M1 for equate to 0.55 and attempt to solve. Award M1M1A1 for p=0.4 with no working M1 for adding probabilities and equating to 1. All terms or equivalent required e.g. p+q=0.5 Award M1A1 for q=0.1 with no working (b) M1 attempting E(X ²) with at least 2 correct terms A1 for fully correct expression or 2.55 Division by constant at any point e.g. 5 then M0 M1 for subtracting their mean squared A1 for awrt 2.25 Award awrt 2.25 only with no working then 4 marks (c) M1 for 2x(their mean) -4 Award 2 marks for -2.9 with no working	

PMT

Question Number	Scheme	Marks
Q4 (a)	$S_{tt} = 10922.81 - \frac{401.3^2}{15} = 186.6973$ awrt 187	M1A1
	$S_{\nu\nu} = 42.3356 - \frac{25.08^2}{15} = 0.40184$ awrt 0.402	A1
	$S_{iv} = 677.971 - \frac{401.3 \times 25.08}{15} = 6.9974$ awrt 7.00	A1 [4]
(b)	$r = \frac{6.9974}{\sqrt{186.6973 \times 0.40184}}$ = 0.807869 awrt 0.808	M1A1ft A1 [3]
(c)	<i>t</i> is the explanatory variable as we can control temperature but not frequency of noise or equivalent comment	B1 B1 [2]
(d)	High value of <i>r</i> or <i>r</i> close to 1 or Strong correlation	B1 [1]
(e)	$b = \frac{6.9974}{186.6973} = 0.03748$ awrt 0.0375	M1A1
	$a = \frac{25.08}{15} - b \times \frac{401.3}{15} = 0.6692874$ awrt 0.669	M1A1 [4]
(f)	t=19, v=0.6692874+0.03748x19=1.381406 awrt 1.4	B1 [1] Total 15
	Notes:(a) M1 any one attempt at a correct use of a formula.Award full marks for correct answers with no working.Epen order of awarding marks as above.(b) M1 for correct formula and attempt to useA1ft for their values from part (a)NB Special Case for $\frac{677.971}{\sqrt{10922.81 \times 42.3356}}$ M1A0A1 awrt 0.808Award 3 marks for awrt 0.808 with no working(c) Marks are independent. Second mark requires some interpretation in context and can be statements such as 'temperature effects / influences pitch or noise'B1 'temperature is being changed' BUT B0 for 'temperature is changing'(e) M1 their values the right way upA1 for awrt 0.0375M1 attempt to use correct formula with their value of bA1 awrt 0.669(f) awrt 1.4	

PMT

Question Number		Scheme			Marks
Q6 (a)	F(4)=1 (4+k) ² = 25 k = 1 as k > 0				M1 A1 [2]
(b)	x P(X=x)	$ \frac{2}{9} \frac{2}{25} $	$\frac{3}{7}$	$\frac{4}{9}$	B1ftB1B1 [3] Total 5
	Notes: (a) M1 for use of $F(4) = 1$ only $F(2)+F(3)+F(4)=1$ M0 A1 for $k=1$ and ignore $k=-9$ (b) B1ft follow through their k inclusive. B1 correct answer only or exact B1 correct answer only correct answer correct answer only correct answer only correct answer correct answer only correct answer corr	r If F(2)=1 a for P(X=2) o ct equivalent ct equivalent	nd / or F(3)=1 seen th	en M0. ween 0 and 1	[3] Total 5

Question Number	Scheme						
Q7 (a)	$z = \frac{53 - 50}{2}$ Attempt to standardise P(X>53)=1-P(Z<1.5) =1-0.9332 =0.0668	M1 B1 A1					
(b)	$P(X \le x_0) = 0.01$ $\frac{x_0 - 50}{2} = -2.3263$ $x_0 = 45.3474$ awrt 45.3 or 45.4	[3] M1 M1B1 M1A1					
(c)	P(2 weigh more than 53kg and 1 less) = $3 \times 0.0668^2(1-0.0668)$ = 0.012492487 awrt 0.012	[5] B1M1A1ft A1 [4] Total 12					
	Notes:(a) M1 for using 53,50 and 2, either way around on numeratorB1 1- any probability for markA1 0.0668 cao(b) M1 can be implied or seen in a diagramor equivalent with correct use of 0.01 or 0.99M1 for attempt to standardise with 50 and 2 numerator either way aroundB1 for ± 2.3263 M1 Equate expression with 50 and 2 to a z value to form an equation with consistentsigns and attempt to solveA1 awrt 45.3 or 45.4(c) B1 for 3,M1 $p^2(1-p)$ for any value of pA1ft for p is their answer to part (a) without 3A1 awrt 0.012 or 0.0125						

Mark Scheme (Results) January 2009

GCE

GCE Mathematics (6683/01)

January 2009 6683 Statistics S1 Mark Scheme

Question Number	Scheme				
1	$S_{xx} = 57.22 - \frac{(21.4)^2}{10} = 11.424$	M1 A1			
(a)	$S_{xy} = 313.7 - \frac{21.4 \times 96}{10} = 108.26$	A1	(3)		
(b)	$b = \frac{S_{xy}}{S_{xx}} = 9.4765$				
	$a = \overline{y} - b\overline{x} = 9.6 - 2.14b = (-10.679)$	A1	(4)		
(c)	y = -10.7 + 9.48x Every (extra) <u>hour</u> spent using the programme produces about <u>9.5 marks improvement</u>	B1ft	(1)		
(d)	$y = -10.7 + 9.48 \times 3.3 = 20.6$ awrt 21	M1,A1	(2)		
(e)	Model may not be valid since [8h is] outside the range [0.5 - 4].	B1	(1) [11]		
(a)	M1 for a correct expression 1^{st} A1 for AWRT 11.4 for S_{xx}				
	2^{nd} A1 for AWRT 108 for S _{xy}				
(b)	Correct answers only: One value correct scores M1 and appropriate A1, both correct M1A	A1A1			
	1^{st} M1 for using their values in correct formula 1^{st} A1 for AWRT 9.5 2^{nd} M1 for correct method for <i>a</i> (minus sign required)				
	2^{nd} A1 for equation with <i>a</i> and <i>b</i> AWRT 3 sf (e.g. $y = -10.68 + 9.48x$ is fine) Must have a full equation with <i>a</i> and <i>b</i> correct to awrt 3 sf				
(c)	B1ft for comment conveying the idea of <u><i>b</i></u> marks per hour. Must mention value of <i>b</i> to ft their value of <u><i>b</i></u> . No need to mention "extra" but must mention "marks" and "h	out can			
	e.g. "9.5 times per hour" scores B0				
(a)	M1 for sub $x = 3.3$ into their regression equation from the end of part (b) A1 for awrt 21				
(e)	B1 for a statement that says or implies that it may <u>not</u> be valid because <u>outside the ra</u> They do not have to mention the values concerned here namely 8 h or 0.5 - 4	ange.			

Question Number	Scheme	Marks
2 (a)	$E = \text{take regular exercise} \qquad B = \text{always eat breakfast} P(E \cap B) = P(E B) \times P(B) = \frac{9}{25} \times \frac{2}{3} = 0.24 \text{ or } \frac{6}{25} \text{ or } \frac{18}{75}$	M1 A1 (2)
(b)	$P(E \cup B) = \frac{2}{3} + \frac{2}{5} - \frac{6}{25} \text{or } P(E' \mid B') \text{or } P(B' \cap E) \text{or } P(B \cap E')$ $= \frac{62}{75} = \frac{13}{25} = \frac{12}{75} = \frac{32}{75}$ $P(E' \cap B') = 1 - P(E \cup B) = \frac{13}{25} \text{or } 0.17\dot{3}$	M1 A1 M1 A1 (4)
(c)	$P(E B) = 0.36 \neq 0.40 = P(E) \text{or} P(E \cap B) = \frac{6}{25} \neq \frac{2}{5} \times \frac{2}{3} = P(E) \times P(B)$ So <i>E</i> and <i>B</i> are <u>not</u> statistically independent	M1 A1 (2) [8]
(a)	M1 for $\frac{9}{25} \times \frac{2}{3}$ or P(<i>E</i> <i>B</i>)×P(<i>B</i>) and at least one correct value seen. A1 for 0.24 or exa NB $\frac{2}{5} \times \frac{2}{3}$ alone or $\frac{2}{5} \times \frac{9}{25}$ alone scores M0A0. Correct answer scores full marks.	ct equiv.
(b) (c)	1 st M1 for use of the addition rule. Must have 3 terms and some values, can ft their (a) <u>Or</u> a full method for $P(E' B')$ requires $1 - P(E B')$ and equation for $P(E B')$: (a) $\frac{Or}{P}$ a full method for $P(B' \cap E)$ <u>or</u> $P(B \cap E')$ [or other valid method] 2 nd M1 for a method leading to answer e.g. $1 - P(E \cup B)$ <u>or</u> $P(B') \times P(E' B')$ <u>or</u> $P(B') - P(B' \cap E)$ <u>or</u> $P(E') - P(B \cap E')$ <u>Venn Diagram</u> 1 st M1 for diagram with attempt at $\frac{2}{5} - P(B \cap E)$ or $\frac{2}{3} - P(B \cap E)$. Ca 1 st A1 for a correct first probability as listed or 32, 18 and 12 on Venn Diagram 2 nd M1 for identifying suitable values to test for independence e.g. $P(E) = 0.40$ and $P(E B)$ <u>Or</u> $P(E) \times P(B) =$ and $P(E \cap B) =$ their (a) [but their (a) $\neq \frac{2}{5} \times \frac{2}{3}$]. Values see A1 for correct values and a correct comment <u>Diagrams</u> You may see these or find these useful for identifying probabilities.	$+\frac{x}{3} = \frac{2}{5}$ in ft their (a) = 0.36 n somewhere
	$\frac{2}{1/3} \xrightarrow{\mathbb{B}} \stackrel{\mathbb{P}_{25}}{\longrightarrow} \xrightarrow{\mathbb{E}} \stackrel{\mathbb{P}_{1}}{\longrightarrow} \xrightarrow{\mathbb{E}} \stackrel{\mathbb{P}_{25}}{\longrightarrow} \xrightarrow{\mathbb{E}} \stackrel{\mathbb{P}_{25}}{\longrightarrow} \xrightarrow{\mathbb{P}_{25}} \stackrel{\mathbb{P}_{25}}{\longrightarrow} \xrightarrow{\mathbb{P}_{25}} \xrightarrow{\mathbb{P}_25}} \xrightarrow{\mathbb{P}_{25}} \xrightarrow{\mathbb{P}_25}} \xrightarrow$	bres M1A0 scores M1A0 $=\frac{1}{3} \times \frac{3}{5}$

Quest Num	tion ber			Scheme			Marl	<s< th=""></s<>
3	(a)	E(X) = 0 >	<0.4+1×0.3+	$+3 \times 0.1, = 1$			M1, A1	(2)
	(b)	F(1.5) = [P]	$(X \le 1.5) =] P(X)$	$K \le 1$), = 0.4 + 0.3 = 0	.7		M1, A1	(2)
	(c)	$\mathrm{E}(X^2) = 0$	$v^2 \times 0.4 + 1^2 \times 0.3$	$++3^2 \times 0.1$, = 2			M1, A1	
		Var(X) = 2	-1^2 , = 1 (*)			M1, A10	CSO (4)
	(d)		2					(4)
		$Var(5-3\lambda)$	$(X) = (-3)^2 \operatorname{Var}(X)$	(X), = 9			M1, A1	(2)
	(e)		Total	Cases	Probability]		
				$(X=3) \cap (X=1)$	$0.1 \times 0.3 = 0.03$			
			4	$(X=1) \cap (X=3)$	$0.3 \times 0.1 = 0.03$			
				$(X=2) \cap (X=2)$	$0.2 \times 0.2 = 0.04$		D1D1D1	
			5	$(X=3) \cap (X=2)$	$0.1 \times 0.2 = 0.02$		RIRIRI	
			5	$(X=2) \cap (X=3)$	$0.2 \times 0.1 = 0.02$]	M1	
			6	$(X=3) \cap (X=3)$	$0.1 \times 0.1 = 0.01$]	A1	
		Total proba	bility $= 0.03 + 0.0$	03+0.04 +0.02 + 0.02 + 0	0.01 = 0.15		A1	(6) [16]
	(a)	M1 for a	t least 3 terms see	en. Correct answer only	scores M1A1. Dividing	g by $k \neq 1$	is M0.	
	(h)	M1 for F	F(1,5) = P(Y < 1)	Bowara: $2 \times 0.2 + 3 \times 0$	1 - 0.7 but scores M0/	101		
	(0)		$\Gamma(1.3) = \Gamma(X \leq 1).$	[Deware . $2 \times 0.2 \pm 3 \times 0.2$	1 - 0.7 but scores MOF	1 0]		
	(C)	1 st M1 for a	t least 2 non-zero	terms seen. $E(X^2) = 2$	alone is M0. Condone c	alling $E(X^2)$	2) = Var(λ	<i>.</i>).
		1 st A1 is fo	r an answer of 2 o	or a fully correct expression	ion.			
ALT		2 nd M1 for	$-\mu^2$, condone 2 -	- 1, unless clearly 2	Allow $2-\mu^2$, with =	= 1 even if F	$E(X) \neq 1$	
		2^{nd} A1 for	a fully correct sol	ution with no incorrect w	vorking seen, both Ms r	equired.		
		$\sum (x-\mu)^{2}$	$^{2} \times P(X = x)$					
		1 st M1 for a	an attempt at a ful	ll list of $(x - \mu)^2$ values	and probabilities. 1^{st} A	1 if all corr	ect	
		2 nd M1 for	at least 2 non-zer	o terms of $(r - \mu)^2 \times \mathbf{P}(r)$	$(X - r)$ seen $2^{nd} \Delta 1$ for	$r 0 4 \pm 0 2$	$\pm 0.4 - 1$	
		2 101 101	at least 2 non-zer	$(x - \mu) \times \mathbf{I}$	x = x seen. 2 At it	1 0.4 + 0.2	+ 0.4 - 1	
	(d)	M1 for	use of the correct	formula $-3^2 \operatorname{Var}(X)$ is	M0 unless the final ans	wer is >0		
	(e)	Car	n follow through t	heir $Var(X)$ for M1				
		1 st D1 f.	11 1 1 6		(2.2)	. C 1	-f 4 :- D0	
	$1^{}$ B1 for all cases listed for a total of 4 or 5 or 6 . e.g. (2,2) counted twice for a total 2^{nd} B1 for all cases listed for 2 totals			for a total	01 4 15 BU }			
		3 rd B1 for	a complete list of	f all 6 cases	}These may be high	lighted in a	table	
		$\frac{\text{Using Cum}}{1^{\text{st}} B^1} = \frac{1}{5}$	ulative probabiliti	ies wlative probabilitios was	d e g 2 then 2 or more o	r 3 than 1 a	r more	
		2^{nd} B1 for	both cumulative	probabilities used. 3 rd B	1 for a complete list 1, 3	3; 2, <u>></u> 2; 3, 2	<u>>1</u>	
		M1 for	one correct pair of	of correct probabilities m	ultiplied	_ · · -		
		1^{st}A1 for 2^{nd}A1 for	all 6 correct prob	vabilities listed (0.03, 0.0)	3, 0.04, 0.02, 0.02, 0.01) needn't be	added.	
		$ \begin{array}{ccc} M1 & \text{for} \\ 1^{\text{st}} A1 & \text{for} \\ 2^{\text{nd}} A1 & \text{for} \end{array} $	all 6 correct pair of 0.15 or exact equ	of correct probabilities m babilities listed (0.03, 0.0 uivalent only as the final	ultiplied 3, 0.04, 0.02, 0.02, 0.01 answer.) needn't be	added.	

Question Number	Scheme	Mar	ks
5 (a)	8-10 hours: width = $10.5 - 7.5 = 3$ represented by 1.5cm 16-25 hours: width = $25.5 - 15.5 = 10$ so represented by <u>5 cm</u> 8- 10 hours: height = fd = $18/3 = 6$ represented by 3 cm 16-25 hours: height = fd = $15/10 = 1.5$ represented by <u>0.75 cm</u>	B1 M1 A1	(3)
(b)	$Q_2 = 7.5 + \frac{(52 - 36)}{18} \times 3 = 10.2$	M1 A1	
	$Q_1 = 5.5 + \frac{(26-20)}{16} \times 2[=6.25 \text{ or } 6.3] \text{ or } 5.5 + \frac{(26.25-20)}{16} \times 2[=6.3]$	A1	
	$Q_3 = 10.5 + \frac{(78 - 54)}{25} \times 5[= 15.3] \text{or } 10.5 + \frac{(78.75 - 54)}{25} \times 5[= 15.45 \ \text{(}15.5]$	A1 A1ft	(5)
(c)	$IQR = (15.3 - 6.3) = 9$ $\sum fr = 1333.5 \implies \overline{r} = \frac{1333.5}{7} = 0$ AWRT 12.8	M1 A1	
	$\sum fx^2 = 27254 \Rightarrow \sigma_x = \sqrt{\frac{27254}{104} - \overline{x}^2} = \sqrt{262.05 - \overline{x}^2} $ AWRT 9.88	M1 A1	(4)
(d)	$ \begin{array}{c} 2 \\ 2 \\ Q_3 - Q_2 [= 5.1] > Q_2 - Q_1 [= 3.9] \text{or} Q_2 < \overline{x} \end{array} $	B1ft	(2)
(e)	So data is positively skew	ab i	(2)
	Use median and IQR, since data is skewed <u>or</u> not affected by extreme values or outliers	B1 B1	(2) [16]
(a)	M1 For attempting both frequency densities $\frac{18}{3}$ (= 6) and $\frac{15}{10}$, and $\frac{15}{10} \times SF$, where $SF \neq 10^{-1}$: 1	
(b)	NB Wrong class widths (2 and 9) gives $\frac{h}{1.66} = \frac{3}{9} \rightarrow h = \frac{5}{9}$ or 0.55 and scores M	11A0	
	M1 for identifying correct interval and a correct fraction e.g. $\frac{\frac{1}{2}(104)-36}{18}$. Condone 52.3 1 st A1 for 10.2 for median. Using $(n + 1)$ allow awrt 10.3	5 or 53	
	2^{nd} A1 for a correct expression for either Ω or Ω (allow 26.25 and 78.75) Mu	<u>NB</u> :	
	3^{rd} A1 for correct expressions for both Q_1 and Q_2	some	
(c)	4^{th} A1ft for IQR, ft their quartiles. Using $(n + 1)$ gives 6.28 and 15.45 m	ethod	
	1 st M1 for attempting $\sum fx$ and \overline{x}		
(d)	2 nd M1 for attempting $\sum fx^2$ and σ_x , $$ is needed for M1. Allow $s = awrt 9.93$		
	1 st B1ft for suitable test, values need not be seen but statement must be compatible wire values used. Follow through their values	th	
(e)	2 nd dB1 Dependent upon their test showing positive and for stating positive skew If their test shows negative skew they can score 1 st B1 but lose the second		
	1^{st} B1for choosing median and IQR. Must mention both.}Award independence 2^{nd} B1for suitable reason}	dently	
	e.g. "use median because data is skewed" scores B0B1 since IQR is not mentioned		

Question Number	Scheme	Mai	ŕks
6 (a	$P(X < 39) = P\left(Z < \frac{39-30}{2}\right)$	M1	
	$ = \frac{P(7 < 1.8)}{-P(7 < 1.8)} = -0.9641 $ (allow awrt 0.964)	A1	(2)
(b	-1(2 < 1.6) - 0.5041 (allow awit 0.504)		
	$P(X < d) = P\left(Z < \frac{d - 30}{5}\right) = 0.1151$		
	$1 - 0.1151 = 0.8849$ (allow ± 1.2)	MI B1	
	$\Rightarrow z = -1.2$	M1A1	(4)
	$\therefore \frac{d-30}{5} = -1.2 \qquad \qquad \underline{d=24}$		
(c			
	$P(X > e) = 0.1151$ so $e = \mu + (\mu - \text{their } d)$ or $\frac{e - 30}{5} = 1.2$ or $-\text{their } z$	M1	
	<u>e = 36</u>	A1	(2)
(d	$P(d < X < e) = 1 - 2 \times 0.1151$	M1	
	= 0.7698 AWRT <u>0.770</u>	A1	(2)
	Answer only scores all marks in each section BUT check (b) and (c) are in correct or	rder	[10]
(0			
(a	M1 for standardising with σ , $z = \pm \frac{39 - 30}{5}$ is OK		
	A1 for 0.9641 or awrt 0.964 but if they go on to calculate $1 - 0.9641$ they get M1A0)	
(b	1^{st} M1 for attempting 1-0.1151. Must be seen in (b) in connection with finding d		
	B1 for $z = \pm 1.2$. They must state $z = \pm 1.2$ or imply it is a z value by its use.		
	I his mark is only available in part (b). (d-30)		
	$2^{\text{nu}} \text{ M1 for } \left(\frac{1}{5}\right) = \text{their negative } z \text{ value (or equivalent)}$		
(C	M1 for a full method to find e. If they used $z = 1.2$ in (b) they can get M1 for $z = \pm 1.2$	here	
	If they use symmetry about the mean $\mu + (\mu - \text{then } d)$ then it their d for MI Must explicitly see the method used unless the answer is correct.		
(d	M_1 for a complete method or use of a correct expression e.g. "their 0.8849" - 0.1151		
	$\underline{\text{or } If their } d < \text{their } e \text{ using their values with } P(X < e) - P(X < d)$		
	If their $d \ge$ their <i>e</i> then they can only score from an argument like $1 - 2x0.1151$ A negative probability or probability > 1 for part (d) scores M0A0		

Mark Scheme (Results) Summer 2009

GCE

GCE Mathematics (6683/01)

PMT

June 2009 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks
Q1 (a)	$(\mathbf{S}_{pp} =) \ 38125 - \frac{445^2}{10} = 18322.5 $ awrt 18300	M1 A1
	$(\mathbf{S}_{pt} =) \ 26830 - \frac{445 \times 240}{10} \\ = \ 16150 \qquad \text{awrt } 16200$	A1 (3)
(b)	$r = \frac{"16150"}{\sqrt{"18322.5" \times 21760}}$ Using their values for method	M1
	= 0.8088 awrt 0.809	A1 (2)
(c)	As the temperature increases the pressure increases.	B1 (1) [6]
Notes	1(a) M1 for seeing a correct expression $38125 - \frac{445^2}{10}$ or $26830 - \frac{445 \times 240}{10}$ If no working seen, at least one answer must be exact to score M1 by implication. 1(b) Square root and their values with 21760 all in the right places required for method. Anything which rounds to (awrt) 0.809 for A1. 1(c) Require a correct statement in context using <u>temperature/heat</u> and <u>pressure</u> for B1. Don't allow " as <i>t</i> increases <i>p</i> increases". Don't allow proportionality. Positive correlation only is B0 since there is no interpretation.	

Question Number	Scheme	Mar	ks
Q2 (a)	$\frac{\frac{1}{5}}{\frac{1}{2}}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{2}$ $\frac{1}{5}$ $$	B1 B1 B1	
(b)(i)	$\frac{1}{3} \times \frac{1}{10} = \frac{1}{30}$ or equivalent	M1 A1	(3)
(ii)	CNL + BNL + FNL = $\frac{1}{2} \times \frac{4}{5} + \frac{1}{6} \times \frac{3}{5} + \frac{1}{3} \times \frac{9}{10}$	M1	(2)
	$=\frac{4}{5}$ or equivalent	A1	(2)
(c)	$P(F'/L) = \frac{P(F' \cap L)}{P(L)}$ Attempt correct conditional probability but see notes	M1	
	$= \frac{\frac{1}{6} \times \frac{2}{5} + \frac{1}{2} \times \frac{1}{5}}{1 - (ii)} \frac{\text{numerator}}{\text{denominator}}$	$\frac{A1}{A1ft}$	
	$= \frac{\frac{3}{30}}{\frac{1}{5}} = \frac{5}{6} \qquad \text{or equivalent} \qquad \text{cao}$	A1	(4) [11]
Notes	Exact decimal equivalents required throughout if fractions not used e.g. 2(b)(i) 0.03 Correct path through their tree given in their probabilities award Ms 2(a) All branches required for first B1. Labels can be words rather than symbols for second B1. Probabilities from question enough for third B1 i.e. bracketed probabilities not required. Probabilities and labels swapped i.e. labels on branches and probabilities at end can be awarded the marks if correct. 2(b)(i) Correct answer only award both marks. 2(b)(ii) At least one correct path identified and attempt at adding all three multiplied pairs award M1 2(c) Require probability on numerator and division by probability for M1.Require numerator correct for their tree for M1. Correct formula seen and used, accept denominator as attempt and award M1 No formula, denominator must be correct for their tree or 1-(ii) for M1 1/30 on numerator only is M0, P(L/F') is M0.		

Ques [.] Numb	tion ber	Scheme	Marks
Q3	(a)	1(cm) cao	B1
	(b)	10 cm^2 represents 15 $10/15 \text{ cm}^2$ represents 1or 1 cm^2 represents 1.5	
		Therefore frequency of 9 is $\frac{10}{15} \times 9$ or $\frac{9}{1.5}$ Require $x \frac{2}{3}$ or $\div 1.5$ height = 6(cm)	M1 A1
			[3]
Notes	5	If 3(a) and 3(b) incorrect, but their (a) x their (b)=6 then award B0M1A0 3(b) Alternative method: f/cw=15/6=2.5 represented by 5 so factor x2 award M1 So f/cw=9/3=3 represented by 3x2=6. Award A1.	

Questic Numbe	on er	Scheme	Mark	S
Q4 ((a)	$Q_2 = 17 + \left(\frac{60 - 58}{2}\right) \times 2$	M1	
		= 17.1 (17.2 if use 60.5) awrt 17.1 (or17.2)	A1	(2)
((b)	$\sum fx = 2055.5$ $\sum fx^2 = 36500.25$ Exact answers can be seen below or implied	B1 B1	(2)
		by correct answers. Evidence of attempt to use midpoints with at least one correct	M1	
		Mean = 17.129 awrt 17.1	B1	
		$\sigma = \sqrt{\frac{36500.25}{120} - \left(\frac{2055.5}{120}\right)^2}$	M1	
		= 3.28 (s= 3.294) awrt 3.3	A1	(6)
((c)	$\frac{3(17.129 - 17.1379)}{3.28} = -0.00802$ Accept 0 or awrt 0.0	M1 A1	
		No skew/ slight skew	B1	(3)
((d)	The skewness is very small. Possible.	B1 B1de	ep (2)
Notes				[13]
		4(a) Statement of $17 + \frac{\text{freq into class}}{\text{class freq}} \times \text{cw}$ and attempt to sub or		
		$\frac{m-17}{10-17} = \frac{60(.5)-58}{87-58}$ or equivalent award M1		
		$r_{19-17} = 87-38$ cw=2 or 3 required for M1.		
		17.2 from cw=3 award A0. 4(b) Correct $\sum fx$ and $\sum fx^2$ can be seen in working for both B1s		
		Midpoints seen in table and used in calculation award M1 Require complete correct formula including use of square root and attempt to sub for		
		M1. No formula stated then numbers as above or follow from (b) for M1		
		$(\sum fx)^2$, $\sum (fx)^2 or \sum f^2 x$ used instead of $\sum fx^2$ in sd award M0 Correct answers only with no working award 2/2 and 6/6		
		4(c) Sub in their values into given formula for M1		
		approximately equal to median' or equivalent award first B1. Don't award second B1		
		if this is not the case. Second statement should imply 'Greg's suggestion that a normal distribution is suitable is possible' for second B1 dep.		
		If B0 awarded for comment in (c).and (d) incorrect, allow follow through from the comment in (c).		

Quest Numb	ion er	Scheme	Marks	
Q5	(a)	$b = \frac{59.99}{33.381}$	M1	
		= 1.79713 1.8 or awrt 1.80	A1	
		$a = 32.7 - 1.79713 \times 51.83$ $= -60.44525$ $w = -60.445251 + 1.79713l$ l and w required and awrt 2sf	M1 A1 A1ft	(5)
	(b)	$w = -60.445251+ 1.79713 \times 60$ = 47.3825 In range 47.3 – 47.6 inclusive	M1 A1	(0)
	(c)	It is extrapolating so (may be) unreliable.	B1, B1dep	(2)
			([(2) [9]
Notes		5(a) Special case $b = \frac{59.99}{120.1} = 0.4995 \text{ MOA0}$ $a = 32.7 - 0.4995 \times 51.83 \text{ M1A1}$ $w = 6.8 + 0.50l \text{ at least } 2 \text{ sf required for A1}$ 5(b) Substitute into their answer for (a) for M1 5(c) 'Outside the range on the table' or equivalent award first B1		

Question Number	Scheme	Marks	
Q6 (a)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	B1 (1))
(b)	3a + 2a + a + b = 1 2a + 2a + 3b = 1.6 or equivalent, using Sum of probabilities =1 14a - 1.4 or equivalent, using E(X)=1.6 Attempt to solve	M1 M1 M1dep	
	a = 0.1 $b = 0.4$ $Attempt to solve cao$	B1 B1	١
(c)	P(0.5 < x < 3) = P(1) + P(2) $= 0.2 + 0.1$ 3a or their 2 <i>a</i> +their <i>a</i>	(5) M1)
	= 0.3 Require $0 < 3a < 1$ to award follow through	A1 ft (2))
(d)	E(3X-2) = 3E(X) - 2 = 3 × 1.6 - 2 = 2.8 cao	M1 A1	1
(e)	$E(X^{2}) = 1 \times 0.2 + 4 \times 0.1 + 9 \times 0.4 (= 4.2)$ Var (X) = "4.2" - 1.6 ²	(2) M1 M1)
(f)	Var(3X - 2) = 9 Var(X)	(3) M1)
	= 14.76 awrt 14.8	A1 (2) [15])]
Notes	6(a) Condone <i>a</i> clearly stated in text but not put in table. 6(b) Must be attempting to solve 2 different equations so third M dependent upon first two Ms being awarded. Correct answers seen with no working B1B1 only, 2/5 Correctly verified values can be awarded M1 for correctly verifying sum of probabilities =1, M1 for using $E(X)$ =1.6 M0 as no attempt to solve and B1B1 if answers correct. 6(d) 2.8 only award M1A1 6(e) Award first M for at least two non-zero terms correct. Allow first M for correct expression with <i>a</i> and <i>b</i> e.g. $E(X^2) = 6a+9b$ Given answer so award final A1 for correct solution. 6(f) 14.76 only award M1A1		

Question Number	Scheme	Marks
Q7(a) (i)	$\mathbf{P}(A \cup B) = a + b $ cao	B1
(ii)	$P(A \cup B) = a + b - ab$ or equivalent	B1 (2)
(b)	$P(R \cup Q) = 0.15 + 0.35 = 0.5 $ 0.5	B1 (1)
(c)	$P(R \cap Q) = P(R Q) \times P(Q)$ = 0.1 × 0.35	M1
	= 0.035 0.035	A1
		(2)
(d)	$P(R \cup Q) = P(R) + P(Q) - P(R \cap Q) OR P(R) = P(R \cap Q') + P(R \cap Q)$ $= 0.15 + \text{their (c)}$	M1
	$\begin{array}{ll} 0.5 &= P(R) + 0.35 - 0.035 \\ P(R) &= 0.185 \end{array} \qquad = 0.15 + 0.035 \\ &= 0.185 \end{array} \qquad 0.185 \end{array}$	A1 (2) [7]
Notes	 7(a) (i) Accept a + b - 0 for B1 Special Case If answers to (i) and (ii) are (i) P(A)+P(B) and (ii) P(A)+P(B)-P(A)P(B) award B0B1 7(a)(i) and (ii) answers must be clearly labelled or in correct order for marks to be awarded. 	

Question Number	Scheme	М	arks
Q8 (a)	Let the random variable X be the lifetime in hours of bulb		
	$P(X < 830) = P(Z < \frac{\pm (830 - 850)}{50})$ Standardising with 850 and 50	M1	
	= P(Z < -0.4) = 1 - P(Z < 0.4) Using 1-(probability>0.5) = 1 - 0.6554	M1	
	= 0.3446 or 0.344578 by calculator awrt 0.345	A1	(3)
(b)	$\begin{array}{c} 0.3446 \times 500 & \text{Their (a) x 500} \\ = 172.3 & \text{Accept 172.3 or 172 or 173} \end{array}$	M1 A1	(3)
(c)	Standardise with 860 and σ and equate to z value $\frac{\pm(818-860)}{\sigma} = z$ value	M1	
	$\frac{818 - 860}{\sigma} = -0.84(16) \text{ or } \frac{860 - 818}{\sigma} = 0.84(16) \text{ or } \frac{902 - 860}{\sigma} = 0.84(16) \text{ or equiv.}$	A1	
	$\pm 0.8416(2)$ $\sigma = 49.9$ 50 or awrt 49.9	B1 A1	
(d)	Company Y as the <u>mean</u> is greater for Y.bothThey have (approximately) the same <u>standard deviation</u> or <u>sd</u> both	B1 B1	(4)
			(2) [11]
Notes	 8(a) If 1-z used e.g. 1-0.4=0.6 then award second M0 8(c) M1 can be implied by correct line 2 A1 for completely correct statement or equivalent. Award B1 if 0.8416(2) seen Do not award final A1 if any errors in solution e.g. negative sign lost. 8(d) Must use statistical terms as underlined. 		

Mark Scheme (Results) January 2010

GCE

Statistics S1 (6683)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2010 Publications Code UA023026 All the material in this publication is copyright © Edexcel Ltd 2010

PhysicsAndMathsTutor.com January 2010 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks
Q1 (a	$\frac{1}{3}$ Red $\frac{1}{3}$ Blue	
	Red $\frac{1}{2}$ Red $\frac{1}{3}$ Green $\frac{1}{4}$ Blue $\frac{2}{3}$ Red $\frac{1}{3}$ Green $\frac{1}{3}$ Green $\frac{2}{3}$ Red $\frac{2}{3}$ Red $\frac{1}{3}$ Blue	M1 A1 A1 (3)
(b	P(Blue bead and a green bead) = $\left(\frac{1}{4} \times \frac{1}{3}\right) + \left(\frac{1}{4} \times \frac{1}{3}\right) = \frac{1}{6}$ (or any exact equivalent)	M1 A1 (2) Total [5]
Q1 (a	M1 for shape and labels: 3 branches followed by 3,2,2 with some <i>R</i> , <i>B</i> and <i>G</i> seen Allow 3 branches followed by 3, 3, 3 if 0 probabilities are seen implying that 3, Allow blank branches if the other probabilities imply probability on blanks is zee Ignore further sets of branches 1^{st} A1 for correct probabilities and correct labels on 1^{st} set of branches. 2^{nd} A1 for correct probabilities and correct labels on 2^{nd} set of branches. (accept 0.33, 0.67 etc or better here) M1 for identifying the 2 cases <i>BG</i> and <i>GB</i> and adding 2 products of probabilities. These cases may be identified by their probabilities e.g. $\left(\frac{1}{4} \times \frac{1}{3}\right) + \left(\frac{1}{4} \times \frac{1}{3}\right)$ NB $\frac{1}{6}$ (or exact equivalent) with no working scores 2/2	2, 2 intended pro
Specia Case	 With Replacement (This oversimplifies so do not apply Mis-Read: max mark 2/5) (a) B1 for 3 branches followed by 3, 3, 3 with correct labels and probabilities of 1/2, 1/4, 1/2 (b) M1 for identifying 2, possibly correct cases and adding 2 products of probabilities by wrong answer (1/4 × 1/4) + (1/4 × 1/4) (1/4 × 1/4) (1/4 × 1/4) (1/4 × 1/4) 	 ¹/₄ on each. but A0 for re M0

Question Number	Scheme	Marks
Q2 (a)	Median is 33	B1 (1)
(b)	$Q_1 = 24, Q_3 = 40, IQR = 16$	B1 B1 B1ft (3)
(c)	$Q_1 - IQR = 24 - 16 = 8$	M1
	So 7 is only outlier	A1ft
(d)	* * * Box Outlier Whisker 0 5 10 15 20 25 30 35 40 45 50 55 60	(2) B1ft B1 B1ft
		(3)
	(accept either whisker)	Total [9]
Q2 (b)	1 st B1 for $Q_1 = 24$ and 2^{nd} B1 for $Q_3 = 40$ 3 rd B1ft for their IQR based on their lower and upper quartile. Calculation of range (40 – 7 = 33) is B0B0B0 <u>Answer only</u> of IQR = 16 scores 3/3. For any other answer we must see working in (b) and leaf diagram	or on stem
(c)	M1 for evidence that Q_1 -IQR has been attempted, their "8" (>7) seen or clearly at sufficient A1 ft must have seen their "8" and a suitable comment that only one person scored	tempted is below this.
(d)	1 st B1ft for a clear box shape and ft their Q_1, Q_2 and Q_3 readable off the scale. Allow this mark for a box shape even if $Q_3 = 40$, $Q_1 = 7$ and $Q_2 = 33$ are used 2 nd B1 for only one outlier appropriately marked at 7 3 rd B1ft for either lower whisker. If they choose the whisker to their lower limit for our follow through their "8". (There should be no upper whisker unless their $Q_3 < 40$, in which case there s whisker to 40) A typical error in (d) is to draw the lower whisker to 7, this can only score B1	d itliers then hould be a B0B0

Ques Num	tion ber	Scheme	Marks	
Q3	(a)	2.75 or $2\frac{3}{4}$, 5.5 or 5.50 or $5\frac{1}{2}$	B1 B1 (2)	
	(b)	Mean birth weight = $\frac{4841}{1500} = 3.227\dot{3}$ awrt 3.23	M1 A1 (2)	
	(c)	Standard deviation = $\sqrt{\frac{15889.5}{1500} - \left(\frac{4841}{1500}\right)^2} = 0.421093 \text{ or } s = 0.4212337$	M1 A1ft A1 (3)	
	(d)	$Q_2 = 3.00 + \frac{403}{820} \times 0.5 = 3.2457$ (allow 403.5 \rightarrow 3.25)	M1 A1 (2)	
	(e)	Mean(3.23) <median(3.25) (or="" close)<="" td="" very=""><td>B1ft</td></median(3.25)>	B1ft	
		Negative Skew (or symmetrical)	dB1ft	
			(2) Total [11]	
Q3	(b)	M1 for a correct expression for mean. Answer only scores both.		
	(c)	M1 for a correct expression (ft their mean) for sd or variance. Condone mis-labelling eg sd= with no square root or no labelling 1 st A1ft for a correct expression (ft their mean) including square root and no mis-labelling Allow 1 st A1 for $\sigma^2 = 0.177 \rightarrow \sigma = 0.42$ 2 nd A1 for awrt 0.421. Answer only scores 3/3		
	(d)	M1 for a correct expression (allow 403.5 i.e. use of $n + 1$) but must have 3.00, 820 and 0.5 A1 for awrt 3.25 provided M1 is scored. NB 3.25 with no working scores 0/2 as some candidates think mode is 3.25.		
	(e)	1 st B1ft for a comparison of their mean and median (may be in a formula but if \pm (mean - median) is calculated that's OK. We are not checking the <u>value</u> but the <u>sign</u> must be consistent.) Also allow for use of quartiles <u>provided correct values seen</u> : $Q_1 = 3.02, Q_3 = 3.47$		
		[They should get $(0.22 =)Q_3 - Q_2 < Q_2 - Q_1 (= 0.23)$ and say (slight) negative skew or symmetric]		
		2 nd dB1ft for a compatible comment based on their comparison. Dependent upon a suitable, correct comparison. Mention of "correlation" rather than "skewness" loses this mark.		

Que: Num	stion Iber	Scheme	Marks	
Λ	(a)			
4	(a)	<i>S D B B B B B B B B B B</i>	M1 M1	
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	A1 A1 B1	
	(h)	16 4	(5)	
	(0)	P(None of the 3 options) = $\frac{10}{180} = \frac{4}{45}$	B1ft (1)	
	(c)	$P(\text{Networking only}) = \frac{17}{180}$	B1ft (1)	
	(d)	P(All 3 options/technician) = $\frac{4}{40} = \frac{1}{10}$	M1 A1 (2) Total [9]	
4	(a)	2 nd M1 There may be evidence of subtraction in "outer" portions, so with 4 in the centre then 35, 40 28 (instead of 31,36,24) along with 33, 9, 3 can score this mark but A0A0 N.B. This is a common error and their "16" becomes 28 but still scores B0 in part (a)		
	(b)	B1ft for $\frac{16}{180}$ or any exact equivalent. Can ft their "16" from their box. If there is no value for their "16" in the box only allow this mark if they have <u>shown</u> some working.		
	(c)	B1ft ft their "17". Accept any exact equivalent		
	(d)	If a probability greater than 1 is found in part (d) score M0A0		
		M1 for clear sight of $\frac{P(S \cap D \cap N)}{P(S \cap N)}$ and an attempt at one of the probabilities, ft their values.		
		Allow P(all 3 $S \cap N$) = $\frac{4}{36}$ or $\frac{1}{9}$ to score M1 A0.		
		Allow a correct ft from their diagram to score M1A0 e.g. in 33,3,9 case in (a): $\frac{4}{44}$ or $\frac{1}{11}$ is M1A0		
		A ratio of probabilities with a <u>product</u> of probabilities on top is M0, even with a correct formula.		
		A1 for $\frac{1}{40}$ or $\frac{1}{10}$ or an exact equivalent		
		Allow $\frac{4}{40}$ or $\frac{1}{10}$ to score both marks if this follows from their diagram, otherwise some		
		explanation (method) is required.		

Question Number	Scheme	Marks	
Q5 (a)	k + 4k + 9k = 1 $14k = 1$	M1	
	$k = \frac{1}{14} \text{**given**} \qquad \text{cso}$	A1 (2)	
(b)	$P(X \ge 2) = 1 - P(X = 1)$ or $P(X = 2) + P(X = 3)$	M1	
	$=1-k=\frac{13}{14}$ or 0.92857 awrt 0.929	A1 (2)	
(C)	$E(X) = 1 \times k + 2 \times k \times 4 + 3 \times k \times 9 \text{or } 36k$	M1	
	$=\frac{36}{14} = \frac{18}{7} \text{ or } 2\frac{4}{7} $ (or exact equivalent)	A1 (2)	
(d)	$\operatorname{Var}(X) = 1 \times k + 4 \times k \times 4 + 9 \times k \times 9, -\left(\frac{18}{7}\right)^2$	M1 M1	
	$\operatorname{Var}(1-X) = \operatorname{Var}(X)$	M1	
	$=\frac{19}{49}$ or 0.387755 awrt 0.388	A1 (4) Total [10]	
Q5 (a)	M1 for clear attempt to use $\sum p(x) = 1$, full expression needed and the "1" must be	clearly seen.	
	This may be seen in a table. A1cso for no incorrect working seen. The sum and "= 1" must be explicitly seen somewhere.		
	A verification approach to (a) must show addition for M1 and have a suitable comment e.g. "therefore $k = \frac{1}{14}$ " for A1 cso		
(b)	M1 for 1- P($X \le 1$) or P($X = 2$) + P($X = 3$) A1 for awrt 0.929. Answer only scores 2/2		
(c)	M1 for a full expression for $E(X)$ with at least two terms correct.		
	NB If there is evidence of division (usually by 3) then score M0A1for any exact equivalent - answer only scores 2/2		
(d)	1 st M1 for clear attempt at E(X^2), need at least 2 terms correct in 1× <i>k</i> +4×4 <i>k</i> +9×9 <i>k</i>	or $E(X^2) = 7$	
	2^{nd} M1 for their E(X ²) - (their μ) ²		
	3^{rd} M1 for clearly stating that Var(1 - X) = Var(X), wherever seen A1 accept awrt 0.388. All 3 M marks are required. Allow 4/4 for correct answer only but must be for Var(1 - X).		

PMT
Question Number		Scheme	Marks
Q6	(a)	$S_{pp} = 106397 - \frac{833^2}{7} = 7270$	M1 A1
		$S_{tp} = 42948 - \frac{341 \times 833}{7} = 2369$, $S_{tt} = 18181 - \frac{341^2}{7} = 1569.42857$ or $\frac{10986}{7}$	A1 A1 (4)
	(b)	$r = \frac{2369}{\sqrt{7270 \times 1569.42857}}$	M1 A1ft
		= 0.7013375 awrt (0.701)	A1 (3)
	(c)	(Pmcc shows positive correlation.) Older patients have higher blood pressure	B1
	(d) + (f)	 (d) Points plotted correctly on graph: -1 each error or omission (within one square of correct position) * see diagram below for correct points 	(1) B2
		(f) Line drawn with correct intercept, and gradient	B1ft B1 (2+2)
	(e)	$b = \frac{2369}{1569.42857} = 1.509466$	M1 A1
		$a = \frac{833}{7} - b \times \frac{341}{7} = 45.467413$	M1
		p = 45.5 + 1.51t	A1 (4)
	(g)	t = 40, p = 105.84 from equation or graph. awrt 106	(+) M1 A1 (2)
	()		Total [18]
Q6	(a)	M1 for at least one correct expression $1^{\text{st}} \text{A1} \text{ for } S_{pp} = 7270 \text{ , } 2^{\text{nd}} \text{A1} \text{ for } S_{tp} = 2369 \text{ or } 2370 \text{ , } 3^{\text{rd}} \text{A1} \text{ for } S_{tt} = \text{ awrt } 1570$	
	(b)	M1 for attempt at correct formula and at least one correct value (or correct ft) M0 for $\frac{2}{\sqrt{1063}}$	
		A1ft All values correct or correct ft. Allow for an answer of 0.7 or 0.70 Answer only: awrt 0.701 is 3/3, answer of 0.7 or 0.70 is 2/3	
	(c)	B1 for comment in context that <u>interprets</u> the fact that correlation is positive, as in scheme. Must mention age and blood pressure in words, not just " t " and " p ".	
	(d)	Record 1 point incorrect as B1B0 on epen. [NB overlay for (60, 135) is slightly wrong]	
	(e)	1^{st} M1for use of the correct formula for b, ft their values from (a) 1^{st} A1allow 1.5 or better 2^{nd} M1for use of $\overline{y} - b\overline{x}$ with their values 2^{nd} A1for full equation with $a = awrt 45.5$ and $b = awrt 1.51$. Must be p in terms of t	, not x and y .
	(f)	1 st B1ft ft their intercept (within one square). You may have to extend their line. 2 nd B1 for correct gradient i.e. parallel to given line (Allow 1 square out when $t = 80$)	1
	(g)	M1 for clear use of their equation with $t = 40$ or correct value from their graph. A1 for awrt 106. Correct answer only (2/2) otherwise look for evidence on graph to a	ward M1

Question Number		Scheme	Marks	
Q7	(a)	bell shaped, must have inflexions	B1	
		5% 30% 154,172 on axis	B1	
		5% and 30%	B1 (3)	
		$154 \mu 172$		
	(b)	P(X < 154) = 0.05		
		$\frac{154 - \mu}{\sigma} = -1.6449$ or $\frac{\mu - 154}{\sigma} = 1.6449$	M1 B1	
		$\mu = 154 + 1.6449\sigma ** given**$	A1 cso (3)	
	(C)	$172 - \mu = 0.5244\sigma$ or $\frac{172 - \mu}{\sigma} = 0.5244$ (allow $z = 0.52$ or better here but	B1	
		must be in an equation) Solving gives $\sigma = 8.2976075$ (awrt 8.30) and $\mu = 167.64873$ (awrt 168)	M1 A1 A1 (4)	
	(d)	P(Taller than 160cm) = P $\left(Z > \frac{160 - \mu}{\sigma}\right)$	M1	
		= P(Z < 0.9217994)	B1	
		= 0.8212 awrt 0.82	A1	
			(3) Total [13]	
(a)		2^{nd} B1 for 154 and 172 marked but 154 must be $< \mu$ and $172 > \mu$. But μ need not b	e marked.	
		Allow for $\frac{104-\mu}{\sigma}$ and $\frac{112-\mu}{\sigma}$ marked on appropriate sides of the peak.	and DIL (all	
		5 B1 the 5% and 50% should be clearly indicated in the correct regions i.e. LH tail $(154 - \mu)$	and KH tall.	
(b)		M1 for $\pm \frac{(z-z-z)}{\sigma} = z$ value (z must be recognizable e.g. 1.64, 1.65, 1.96 but NO	T 0.5199 etc)	
		B1 for ± 1.6449 seen in a line before the final answer.		
		Alcso for no incorrect statements (in μ , σ) equating a z value and a probability or in e.g. $\frac{154-\mu}{\sigma} = 0.05$ or $\frac{154-\mu}{\sigma} = 1.6449$ or $P(Z < \frac{\mu - 154}{\sigma}) = 1.6449$	correct signs	
(c)		B1 for a correct 2 nd equation (NB $172 - \mu = 0.525\sigma$ is B0, since z is incorrect)		
(0)		M1 for solving their two linear equations leading to $\mu = \dots$ or $\sigma = \dots$		
		1 st A1 for σ = awrt 8.30, 2 nd A1 for μ = awrt 168 [NB the 168 can come from false v	vorking.	
		These A marks require use of correct equation from (b), and a z value for "0.5 NB was of z = 0.52 will trained by get $= -8.21$ and $= -167.67$ and access B1N	244" in (c)]	
		NB use of $z = 0.52$ will typically get $\sigma = 8.31$ and $\mu = 167.67$ and score B1M1A0A1 No working and both correct scores 4/4 only one correct scores 0/4		
		Provided the M1 is scored the A1s can be scored even with B0 (e.g. for $z = 0.5$	25)	
(d)		M1 for attempt to standardise with 160, their μ and their σ (> 0). Even allow with symbol B1 for $z = awrt \pm 0.92$ No working and a correct answer can score 3/3 provided σ and μ are correct to	s μ and σ .	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA023026 January 2010

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) Summer 2010

GCE

Statistics S1 (6683)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners. For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024765 All the material in this publication is copyright © Edexcel Ltd 2010

General Marking Guidance

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
- 3. Abbreviations

These are some of the marking abbreviations that will appear in the mark scheme

- ft follow through
- awrt answers which round to
- oe or equivalent (and appropriate)
- isw ignore subsequent working
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- SC: special case

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com June 2010 Statistics S1 6683 Mark Scheme

Scheme	Marl	٢S
$r = \frac{8825}{\sqrt{1022500 \times 130.9}},$ = awrt <u>0.763</u>	M1 A1	(2)
Teams with high attendance scored more goals (oe, statement in context)	B1	(1)
0.76(3)	B1ft	(1)
	Т	otal 4
M1 for a correct expression, square root required Correct answer award 2/2		
Context required (attendance and goals). Condone causality. B0 for 'strong positive correlation between attendance and goals' on its own oe		
Value required. Must be a correlation coefficient between -1 and +1 inclusive. B1ft for 0.76 or better or same answer as their value from part (a) to at least 2 d.p.		
	Scheme $r = \frac{8825}{\sqrt{1022500 \times 130.9}}$, = awrt 0.763 Teams with high attendance scored more goals (oe, statement in context) 0.76(3) M1 for a correct expression, square root required Correct answer award 2/2 Context required (attendance and goals). Condone causality. B0 for 'strong positive correlation between attendance and goals' on its own oe Value required. Must be a correlation coefficient between -1 and +1 inclusive. B1ft for 0.76 or better or same answer as their value from part (a) to at least 2 d.p.	Scheme Mark $r = \frac{8825}{\sqrt{1022500 \times 130.9}}$, = awrt 0.763 M1 A1 Teams with high attendance scored more goals (oe, statement in context) B1 0.76(3) B1ft T M1 for a correct expression, square root required Correct answer award 2/2 Context required (attendance and goals). Condone causality. B0 for 'strong positive correlation between attendance and goals' on its own oe Value required. Must be a correlation coefficient between -1 and +1 inclusive. B1ft for 0.76 or better or same answer as their value from part (a) to at least 2 d.p.

Question Number	Scheme	Marks	
Q2 (a)	P(R) and $P(B)$	B1	
	$\frac{1}{2}$ H 2^{nd} set of probabilities	B1	
	$\frac{1}{2}$ T	(2)	
(b)	$P(H) = \frac{5}{2} \times \frac{2}{7} + \frac{7}{2} \times \frac{1}{7} = \frac{41}{7}$ or awrt 0.569	M1 A1	
(d)	12^{-3} 12^{-2} 72^{-3} 12^{-2} 72^{-3}	(2)	
(c)	$P(R H) = \frac{\frac{5}{12} \times \frac{2}{3}}{\frac{41}{72}}, = \frac{20}{41} \text{ or awrt } 0.488$	M1 A1ft A1	
	12	(3)	
(d)	$\left(\frac{5}{12}\right)^2 + \left(\frac{7}{12}\right)^2$	M1 A1ft	
	$=\frac{25}{144}+\frac{49}{144}=\frac{74}{144}$ or $\frac{37}{72}$ or awrt 0.514	A1 (3)	
	144 144 12	Total 10	
(a)			
	¹ B1 for the probabilities on the second set of branches. Accept 0.410 and 0.385		
	Allow exact decimal equivalents using clear recurring notation if required. $\frac{3}{3}$		
(b)	M1 for an expression for $P(H)$ that follows through their sum of two products of probabilities from their tree diagram		
(c)	5		
Formula seen	M1 for $\frac{P(R \cap H)}{P(H)}$ with denominator their (b) substituted e.g. $\frac{P(R \cap H)}{P(H)} = \frac{\overline{12}}{(\text{their (b)})}$ away	rd M1.	
Formula not seen	M1 for $\frac{\text{probability} \times \text{probability}}{\text{their } b}$ but M0 if fraction repeated e.g. $\frac{\frac{5}{12} \times \frac{2}{3}}{\frac{2}{2}}$.		
	1^{st} A1ft for a fully correct expression or correct follow through 2^{nd} A1 for $\frac{20}{41}$ o.e.		
(d)	M1 for $\left(\frac{5}{12}\right)^2$ or $\left(\frac{7}{12}\right)^2$ can follow through their equivalent values from tree diagram		
	1^{st} A1 for both values correct or follow through from their original tree and + 2^{nd} A1 for a correct answer		
	Special Case $\frac{5}{12} \times \frac{4}{11}$ or $\frac{7}{12} \times \frac{6}{11}$ seen award M1A0A0		

Question Number	Scheme	Marks	
Q3 (a)	$2a + \frac{2}{5} + \frac{1}{10} = 1$ (or equivalent)	M1	
	$a = \frac{1}{4} \text{ or } 0.25$	A1	(2)
(b)	$\mathbf{E}(X) = \underline{1}$	B1	(1)
(c)	$E(X^{2}) = 1 \times \frac{1}{5} + 1 \times \frac{1}{10} + 4 \times \frac{1}{4} + 9 \times \frac{1}{5} \qquad (=3.1)$	M1	
	$Var(X) = 3.1 - 1^2$, $= 2.1 \text{ or } \frac{21}{10} \text{ oe}$	M1 A1	(3)
(d)	$\operatorname{Var}(Y) = (-2)^2 \operatorname{Var}(X), \qquad = \underline{8.4 \text{ or } \frac{42}{5}}\underline{\text{oe}}$	M1 A1	(2)
(e)	$X \ge Y$ when $X = 3$ or 2, so probability = " $\frac{1}{4}$ "+ $\frac{1}{5}$	M1 A1ft	
	$=\frac{9}{20}\mathbf{\underline{oe}}$	A1	(3)
		Tota	al 11
(a)	M1 for a clear attempt to use $\sum P(X = x) = 1$ Correct answer only 2/2. NB Division by 5 in parts (b), (c) and (d) seen scores 0. Do not apply ISW.		
(b)	B1 for 1		
(c)	1 st M1 for attempting $\sum x^2 P(X = x)$ at least two terms correct. Can follow through. 2 nd M1 for attempting $E(X^2) - [E(X)]^2$ or allow subtracting 1 from their attempt at $E(X^2)$ provided no incorrect formula seen. Correct answer only 3/3.		
(d)	M1 for $(-2)^2 \operatorname{Var}(X)$ or $4\operatorname{Var}(X)$ Condone missing brackets provided final answer correct for their $\operatorname{Var}(X)$. Correct answer only 2/2.		
(e)	Allow M1 for distribution of $Y = 6 - 2X$ and correct attempt at $E(Y^2) - [E(Y)]^2$ M1 for identifying $X = 2, 3$ 1 st A1ft for attempting to find their P(X=2) + P(X = 3) 2 nd A1 for $\frac{9}{20}$ or 0.45		

Question Number	Scheme	Marks	
Q4 (a)	$\frac{2+3}{\text{their total}} = \frac{5}{\text{their total}} = \frac{1}{6} (** \text{ given answer}^{**})$	M1 A1cso	(2)
(b)	$\frac{4+2+5+3}{\text{total}}$, $=\frac{14}{30}$ or $\frac{7}{15}$ or $0.4\dot{6}$	M1 A1	(2)
(c)	$\mathbf{P}(A \cap C) = 0$	B1	(1)
(d)	P(C reads at least one magazine) = $\frac{6+3}{20} = \frac{9}{20}$	M1 A1	(2)
(e)	$P(B) = \frac{10}{30} = \frac{1}{3}, P(C) = \frac{9}{30} = \frac{3}{10}, P(B \cap C) = \frac{3}{30} = \frac{1}{10} \text{ or } P(B C) = \frac{3}{9}$	M1	
	$P(B) \times P(C) = \frac{1}{3} \times \frac{3}{10} = \frac{1}{10} = P(B \cap C)$ or $P(B C) = \frac{3}{9} = \frac{1}{3} = P(B)$	M1	
	So yes they are statistically independent	A1cso	(3)
		Tota	I 10
(a)	M1 for $\frac{2+3}{\text{their total}}$ or $\frac{5}{30}$		
(b)	M1 for adding at least 3 of "4, 2, 5, 3" and dividing by their total to give a probability Can be written as separate fractions substituted into the completely correct Addition Rule		
(c)	B1 for 0 or 0/30		
(d)	M1 for a denominator of 20 or $\frac{20}{30}$ leading to an answer with denominator of 20		
	$\frac{9}{20}$ only, 2/2		
(e)	 1st M1 for attempting all the required probabilities for a suitable test 2nd M1 for use of a correct test - must have attempted all the correct probabilities. Equality can be implied in line 2. A1 for fully correct test carried out with a comment 		

Ques Numi	tion ber	Scheme	Marks	
Q5	(a)	23, 35.5 (may be in the table)	B1 B1	(2)
	(b)	Width of 10 units is 4 cm so width of 5 units is <u>2 cm</u>	B1	(2)
		Height = $2.6 \times 4 = 10.4$ cm	M1 A1	(3)
	(c)	$\sum fx = 1316.5 \Rightarrow \overline{x} = \frac{1316.5}{56} = \text{awrt } \underline{23.5}$	M1 A1	
		$\sum fx^2 = 37378.25$ can be implied	B1	
		So $\sigma = \sqrt{\frac{37378.25}{56} - \overline{x}^2} = \text{awrt}\underline{10.7}$ allow $s = 10.8$	M1 A1	(5)
	(d)	$Q_2 = (20.5) + \frac{(28-21)}{11} \times 5 = 23.68$ awrt <u>23.7 or 23.9</u>	M1 A1	(2)
	(e)	$Q_3 - Q_2 = 5.6, Q_2 - Q_1 = 7.9 (\text{or } \overline{x} < Q_2)$	M1	
		[7.9 >5.6 so] <u>negative skew</u>	A1	(2)
			Tota	(2) I 1/I
	(1)		1014	
	(b)	M1 for their width x their height=20.8. Without labels assume width first, height second and award marks accordingly.		
	(C)	1 st M1 for reasonable attempt at $\sum x$ and /56		
		2^{nd} M1 for a method for σ or s, $$ is required		
		Typical errors $\sum (fx)^2 = 354806.3 \text{ M0}, \sum f^2 x = 13922.5 \text{ M0} \text{ and } (\sum fx)^2 = 1733172$	M0	
		Correct answers only, award full marks.		
	(d)	Use of $\sum f(x - x)^2 = a \text{ wrt } 6428.75$ for B1		
		lcb can be 20, 20.5 or 21, width can be 4 or 5 and the fraction part of the formula correct for M1 - Allow 28.5 in fraction that gives awrt 23.9 for M1A1		
	(e)	M1 for attempting a test for skewness using quartiles or mean and median.		
		Provided median greater than 22.55 and less than 29.3 award for M1 for $Q_3 - Q_2 < Q_2 - Q_1$	without va	lues
		SC Accept mean close to median and no skew oe for M1A1		

Question Number	Scheme	Marks	
Q6 (a)	See overlay	B1 B1	(2)
(b)	The points lie reasonably close to a straight line (o.e.)	B1	(1)
(c)	$\sum d = 27.7, \qquad \sum f = 146$ (both, may be implied)	B1	
	$S_{dd} = 152.09 - \frac{(27.7)^2}{6} = 24.208$ awrt <u>24.2</u>	M1 A1	
	$S_{fd} = 723.1 - \frac{27.7 \times 146}{6} = 49.06$ awrt <u>49.1</u>	A1	(4)
(d)	$b = \frac{S_{fd}}{S_{dd}} = 2.026$ awrt <u>2.03</u>	M1 A1	
	$a = \frac{146}{6} - b \times \frac{27.7}{6} = 14.97$ so <u>$f = 15.0 + 2.03d$</u>	M1 A1	(4)
(e)	A flight costs £2.03 (or about £2) for every extra 100km or about 2p per km .	B1ft	(1)
(f)	$15.0 + 2.03d < 5d$ so $d > \frac{15.0}{(5-2.03)} = 5.00 \sim 5.05$	M1	
	So <i>t</i> > 500~505	A1	(2)
		Tota	al 14
(a)	$\begin{array}{l}1^{st} B1 & \text{for at least 4 points correct (allow } \underline{+} \text{ one 2mm square})\\2^{nd} B1 & \text{for all points correct (allow } \underline{+} \text{ one 2 mm square}\end{array}$		
(b)	Ignore extra points and lines Require reference to points and line for B1.		
(c)	M1 for a correct method seen for either - a correct expression		
	1 st A1 for S_{dd} awrt 24.2 2 nd A1 for S_{cd} awrt 49.1		
(d)	1^{st} M1 for a correct expression for <i>b</i> - can follow through their answers from (c) 2^{nd} M1 for a correct method to find <i>a</i> - follow through their <i>b</i> and their means 2^{nd} A1 for <i>f</i> = in terms of <i>d</i> and all values awrt given expressions. Accept 15 as rounding from correct answer only.		
(e)	Context of cost and distance required. Follow through their value of b		
(f)	M1 for an attempt to find the intersection of the 2 lines. Value of t in range 500 to 505 seen award M1. Value of d in range 5 to 5.05 award M1. Accept t greater than 500 to 505 inclusive to include graphical solution for M 1A1		

Question Number	Scheme	Marks	
Q7 (a)	$P(D > 20) = P\left(Z > \frac{20 - 30}{2}\right)$	M1	
	(8) = P(Z >- 1.25)	A1	
	= <u>0.8944</u> <u>awrt 0.894</u>	A1	(3)
(b)	$P(D < Q_3) = 0.75$ so $\frac{Q_3 - 30}{8} = 0.67$	M1 B1	
	$Q_3 = $ awrt <u>35.4</u>	A1	(3)
(c)	35.4 - 30= 5.4 so $Q_1 = 30 - 5.4 = \text{awrt } \underline{24.6}$	B1ft	(1)
(d)	$Q_3 - Q_1 = 10.8$ so $1.5(Q_3 - Q_1) = 16.2$ so $Q_1 - 16.2 = h$ or $Q_3 + 16.2 = k$	M1	
	$h=\underline{8.4 \text{ to } 8.6}$ and $k=\underline{51.4 \text{ to } 51.6}$ both	A1	(2)
(e)	2P(D > 51.6) = 2P(Z > 2.7)	M1	
	= 2[1 - 0.9965] = awrt 0.007	M1 A1	(3)
		Tota	I 12
(a)	M1 for an attempt to standardise 20 or 40 using 30 and 8. $1^{st} A1$ for $z = \pm 1.25$ $2^{nd} A1$ for awrt 0.894		
(b)	M1 for $\frac{Q_3 - 30}{2}$ = to a z value		
	8 M0 for 0.7734 on RHS. B1 for (z value) between 0.67~0.675 seen. M1B0A1 for use of $z = 0.68$ in correct expression with awrt 35.4		
(c)	Follow through using their of quartile values.		
(d)	M1 for an attempt to calculate 1.5(IQR) and attempt to add or subtract using one of the formulae given in the question - follow through their quartiles		
(e)	$ \begin{array}{l} 1^{\text{st}} \text{M1} & \text{for attempting } 2\text{P}(D > \text{their } k) \text{or} (\text{P}(D > \text{their } k) + \text{P}(D < \text{their } h)) \\ 2^{\text{nd}} \text{M1} & \text{for standardising their } h \text{or} k (\text{may have missed the 2}) \text{so allow for standardising} \\ P(D > 51.6) \text{or} P(D < 8.4) \\ \text{Require boths Ms to award A mark.} \end{array} $		

PhysicsAndMathsTutor.com

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA024765 Summer 2010

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results) January 2011

GCE

GCE Statistics S1 (6683) Paper 1

Edexcel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WC1V 7BH

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

January 2011 Publications Code UA026664 All the material in this publication is copyright © Edexcel Ltd 2011

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark

January 2011 Statistics S1 6683 Mark Scheme

Question Number	Scheme	Marks	
1. (a)	$S_{ll} = 327754.5 - \frac{4027^2}{50} = 3419.92$	M1 A1	
	$S_{lw} = 29330.5 - \frac{357.1 \times 4027}{50} = 569.666$	A1 ((3)
(b)	$r = \frac{569.666}{\sqrt{3419.92 \times 289.6}} = 0.572$ awrt 0.572 or 0.573	M1 A1	(2)
(c)	As the length of the salmon increases the weight increases	B1ft ((1) [6]
	Notes		
(a)	M1 for at least one correct expression 1^{st}A1 for $S_{ll} = \text{awrt } 3420$ (Condone $S_{xx} = \dots$ or even $S_{yy} = \dots$) 2^{nd}A1 for $S_{lw} = \text{awrt } 570$ (Condone $S_{xy} = \dots$)		
(b)	M1 for attempt at correct formula. Must have their S_{ll} , S_{lw} and given S_{ww} in the correct places If S_{ll} , S_{lw} are correct and an answer of awrt 0.57 is seen then award M1A0 M0 for $\frac{29330.5}{\sqrt{327754.5 \times 289.6}}$		
(c)	B1ftfor a comment mentioning "length" and "weight", not just <i>l</i> and <i>w</i> , and the idea of longer salmon weighing more. e.g. "positive correlation between weight and length" is B0 since the idea of positive correlation is not explained. Allow "larger" instead of "heavier" or "longer" Ignore any spurious values mentioned such as 0.572 If their <i>r</i> is negative (but must be $r > -1$) ft an appropriate comment. Condone $r > 1$ if comment is correct. If $ r < 0.4$ allow a comment of no or little relationship between weight and length but for $0 < r < 0.4$ the printed answer is still acceptable too.Treat mention of "skewness" as ISW if a correct interpretation is given		

Question Number	Scheme	Marks	
2. (a)	2.8 + 5.6 + 2.3 + 9.4 + 0.5 + 1.8 + 84.6 = 107 mean = 107 / 28 (= 3.821) (awrt 3.8)	M1 A1	(2)
(b)	It will have no effect since one is 4.5 under what it should be and the other is 4.5 above what it should be.	B1 dB1	(2) [4]
	Notes		
(a)	M1 for a clear attempt to add the two sums. Accept a full expression or 2.8 + 5.6 + + 84.6 = x where $100 < x < 110i.e. seeing at least two correct terms of Keith's and the 84.6 with a slip.A1 for awrt 3.8 (Condone 1 dp/2sf here since data is given to 1 dp or 2 sf)Accept \frac{107}{28} or 3\frac{23}{28} or any exact equivalentCorrect answer implies M1A1$		
(b)	 1st B1 for clearly stating that it will have no effect. ("roughly the same" is B0 B0) 2nd dB1 for a supporting reason that mentions the fact that the increase and decrease are the same and gives some numerical value(s) to support this. e.g. Sum of Keith's observations is still 22.4 (or mean is still 3.2) or Sum is still 107 or 9.4-4.9=5-0.5 (o.e.) This second B1 is dependent on their saying there is no effect so B0B1 is not possible. 		

РМТ	

Question Number	Scheme	Marks			
3. (a)	Outliers $14 + 1.5 \times (14 - 7) = 24.5$ $7 - 1.5 \times (14 - 7) = -3.5$ Outlier 25	M1 A1			
	either upper limit acceptable on diagram	M1 A1ft B1			
	Sales in £'000	(5)			
(b)	Since $Q_3 - Q_2 < Q_2 - Q_1$. Allow written explanation negatively skew	B1 dB1 (2)			
(c)) not true since the lower quartile is 7000 and therefore 75% above 7000 not 10000 or 10 is inside the box or any other sensible comment				
	Notes				
(a)	 A fully correct box-plot (either version) with no supporting work scores 5/5. Otherwise read on 1st M1 for at least one correct calculation seen 1st A1 for 24.5 and -3.5 (or just negative noted) seen. May be read off the graph. If both values are seen but no calculation is given then M1A1, one value M1A0. 2nd M1 for a box with an upper and a lower whisker(s) with at least 2 correct values (condone no median marked) 2nd A1ft for 3,7, 12, 14 and 20 or 24.5 in appropriate places and readable off their scale If <u>both</u> upper whiskers are seen A0				
(b)	1^{st} B1for $Q_3 - Q_2 < Q_2 - Q_1$ statement or an equivalent statement in words Use of $Q_3 - Q_2 < Q_2 - Q_1$ does not require differences to be seen. 2^{nd} dB1for "negative skew" dependent on suitable reason given above. "correlation" is B0 "positive skew" with a supporting argument based on whiskers can score B1B1 e.g. "right hand whisker is longer than LH one so positive skew" $O_3 - O_2 < O_2 - O_1$ followed by "positive skew" is B1B0				
(c)	$1^{\text{st}} B1$ for rejecting the company's claim $2^{\text{nd}} dB1$ for an appropriate supporting reason. Dependent on rejecting company	y's claim.			

Question Number	Scheme	Marks
4. (a)	$b = \frac{1.688}{5.753} = 0.293$ $a = 3.22 - 4.42 \times 0.293 = 1.9231$ p = 1.92 + 0.293v	M1A1 M1 A1 (4)
(b)	$v = \frac{85-5}{10} = 8$ $p = 1.92 + 0.293 \times 8 = 4.3$ (awrt 4.3)	M1 A1 (2) [6]
	Notes	
(a)	Can ignore (a) and (b) labels here 1 st M1 for a correct expression for b. $\frac{1.688}{1.168}$ is M0 1 st A1 for awrt 0.29 2 nd M1 for use of $a = \overline{p} - b\overline{v}$ follow through their value of b(or even just the 2 nd A1 for a complete equation with $a = awrt 1.92$ and $b = awrt 0.293$ y or $p = 1.92 + 0.293x$ is A0 Correct answer with no working is 4/4	letter b)
(b)	M1 for an attempt to find the value of v when $x = 85$ (at least 2 correct t $\pm \frac{85-5}{10}$) <u>or</u> for an attempt to find an equation for p in terms of x and using x = Attempt at equation of p in x requires $p = 1.92 + 0.293 \frac{(x-5)}{10}$ A1 for awrt 4.3 (award when first seen and apply ISW) N.B. $p = 1.92 + 0.293 \times 85$ (o.e.) is M0A0	erms in = 85

Question Number	Scheme	Marks		
5. (a)	Median = $32/2 = 16^{\text{th}} \text{ term} (16.5)$			
	$\frac{x-39.5}{49.5-39.5} = \frac{16-14}{25-14} \text{ or } x = 39.5 + \left(\frac{2}{11} \times 10\right)$	M1		
	Median = 41.3 (use of $n + 1$ gives 41.8) (awrt 41.3)	A1 (2)		
(b)	Mean= $\frac{1414}{32}$ = 44.1875 (awrt 44.2)	B1		
	Standard deviation = $\sqrt{\frac{69378}{32} - \left(\frac{1414}{32}\right)^2}$	M1		
	= 14.7 (or $s = 14.9$)	A1 (2)		
(c)	mean > median therefore <u>positive skew</u>	B1ft B1ft		
		(2) [7]		
	Notes			
(a)	M1 for an attempt to use interpolation to find the median. Condone use of 39 or 40 for 39.5			
	e.g. allow $39 + \frac{2}{11} \times 10$ (o.e.) or $40 + \frac{2}{11} \times 10$ (o.e.) to score M1A0 but must	st have the 10		
	A1 for awrt 41.3 (or awrt 41.8 if using $(n + 1)$)			
(b)	 B1 for awrt 44.2 M1 for a correct expression including square root. (Allow ft of their mean) A1 for awrt 14.7 (If using s for awrt 14.9) 			
	You may see $\sum t = 1339 \rightarrow t = 41.8$ and $\sum t^2 = 62928 \rightarrow \sigma 14.7$ or $s = 14.9$			
Mid-points	this scores B0 for the mean but can score M1 for a correct st.dev expression and A1 for ans. Correct answer only in (a) and (b) can score full marks but check $(n + 1)$ case in (a)			
(c)	1 st B1ft for a correct comparison of their mean and their median (may be in a formula) Calculating median – mean as negative is OK for this B1 but must say +ve skew for 2 nd B1 Only allow comparison to be ≈ 0 if $ mean - median < 0.5$			
	2^{nd} B1ft for a correct description of skewness based on their values of mean and median			
	ft their values for mean and median not their previous calculation/comparison Must be compatible with their previous comparison (if they have one) "Positive skew" with no reason is B0B1 provided you can see their values that imply that. Description should be "positive" or "negative" or "no" skew or "symmetric"			
	"Positive correlation" is B0			
Quartiles	$ 1^{s_1} B1ft $ if $Q_1 = awrt 32 and Q_3 = awrt 49$ seen and a correct comparison made. If Q_2			
	2 nd B1ft if $Q_1 = awrt 32 \text{ or } Q_3 = awrt 49$ seen and a correct description base	sed on their		
	quartiles and their comparison is made. (Should get "negative sk	tew")		

PhysicsAndMathsTutor.com

Question Number	Scheme					Marks	5		
6. (a)	1) $k + 2k + 3k + 4k = 1$ or $10k = 1$ k = 0.1 (*) [allow verification with a comment e.g. "so $k = 0.1$ "]					B1cso	(1)		
(b)	$E(X) = 1 \times 0.1 + 2 \times 0.2 + 3 \times 0.3 + 4 \times 0.4 = 3$						M1 A1	(2)	
(c)	$E(X^{2}) = 1 \times 0.1 + 4 \times 0.2 + 9 \times 0.3 + 16 \times 0.4 = 10$						M1 A1	(2)	
(d)	Var(X) = 10 - 9(=1)					M1			
	$Var(2-5X) = 5^2 Var(X) = 25$						M1 A1	(3)	
(e)	(e) $P(1,3) + P(2,2) = 2 \times 0.1 \times 0.3 + 0.2 \times 0.2 = 0.1$ (*)					M1 A1cso	(2)		
(f)	$X_1 + X_2$ 2 3 4		5	6	7	8		B1 B1	(2)
	p = 0.01 = 0.04 = 0	.1	0.2	0.25	0.24	0.16		5.5.	(2)
(g)	P(2) + P(3) = 0.05							M1A1	
									(2) [14]

Question Number	Scheme	Marks				
	Notes					
(a)	B1 for a clear attempt to use sum of probabilities = 1. Must see previous line as well as $k = 0.1$					
	A correct expression for $E(X)$ or $E(X^2)$ that is later divided by 4	A correct expression for $E(X)$ or $E(X^2)$ that is later divided by 4 scores M0				
(b)	M1 for a completely correct expression. May be implied by correct answer of 3 or 30 <i>k</i>					
	A1 for 3 only.					
(c)	M1 for a completely correct expression. May be implied by correct answer of 10 or $100k$					
	A1 for 10 only.					
	[For $E(X^2) = 0.1 + 0.8 + 2.7 + 6.4 - 9 = 1$ scores M0A0 but accept this as	Var(X) in (d)]				
(d)	1 st M1 for using $Var(X) = E(X^2) - E(X)^2$, f.t their values from (b) and (c)					
	Allow this mark for $Var(X) = 10-9$ or better. May be implied if this	is seen in (c).				
	2^{nd} M1 for 5^{2} Var(X) or 25Var(X) can f.t. their Var(X). Allow -5^{2} if it late	r becomes +25				
	A1 for 25 only. Dependent upon both Ms					
	Forming distribution for $Y = 2-5X$ gets M1 for E(Y^2)=194 then M1A1 for 194-169=25					
	M1 for correctly identifying $(1, 2)$ or $(2, 1)$ and $(2, 2)$ as required eases					
(e)	$\frac{1}{(2k^2 + 4k^2 \text{ or hottor})} = \frac{1}{(2k^2 + 4k^2 \text{ or hottor})}$					
	(3k + 4k of better)					
(f)	1^{st} B1 for 0.2 correctly assigned. May be in table.					
	2 nd B1 for 0.16 correctly assigned. May be in table					
(g)	M1 for $P(2) + P(3)$. May be implied by correct answer of 0.05					
	A1 for 0.05 only.					
	Correct answer only can score full marks in parts (b), (c), (f) a	ana (g)				

Question Number	Scheme				
7. (a)	$\sum_{\substack{\frac{2}{5}\\ \frac{1}{2}\\ \frac{1}{$	B1			
	$\frac{\frac{1}{9}}{\frac{1}{2}} \qquad \frac{3}{2} \qquad R \qquad \frac{1}{6} \qquad \frac{4}{9}$	B1			
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B1			
	$\frac{5}{9} r \left(\frac{1}{9}\right)$				
	all three of $\frac{1}{9}, \frac{1}{9}, \frac{1}{9}$	B1 (4)			
(b)	$P(A) = P(RR) + P(YY) = \frac{1}{2} \times \frac{2}{5} + \frac{1}{2} \times \frac{2}{5} = \frac{2}{5}$ B1 for $\frac{1}{2} \times \frac{2}{5}$ (oe) seen at least once	B1 M1 A1 (3)			
(c)	P(B) = P(RRR) + P(RYR) + P(YRR) + P(YYR) M1 for at least 1 case of 3 balls identified. (Implied by 2 nd M1)	M1			
	$\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times \frac{3}{5} \times \frac{5}{9}\right) + \left(\frac{1}{2} \times \frac{3}{5} \times \frac{5}{9}\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{4}{9}\right) = \frac{5}{9} (*)$	M1,A1cso (3)			
(d)	$P(A \cap B) = P(RRR) + P(YYR)$ M1 for identifying both cases and + probs. may be implied by correct expressions	M1			
	$= \left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{4}{9}\right) \qquad = \frac{2}{9} (*)$	A1cso (2)			
(e)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$ Must have some attempt to <u>use</u>	M1			
	$= "\frac{2}{5}" + \frac{5}{9} - \frac{2}{9} = \frac{11}{15}$	A1cao			
		(2)			

Question Number	Scheme					
(f)	$\frac{P(RRR)}{P(RRR) + P(YYY)} = \frac{\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}}{\left(\frac{1}{2} \times \frac{2}{5} \times \frac{2}{3}\right) + \left(\frac{1}{2} \times \frac{2}{5} \times \frac{5}{9}\right)} = \frac{6}{11}$ Probabilities must come from the product of 3 probs. from their tree diagram.	M1 A1ft A1 cao (3)				
		[17]				
	Notes					
(b)	M1 for both cases, and +, attempted, ft their values from tree diagram. May be 4 cases of 3 balls.					
(c)	2^{nd} M1 for all 4 correct expressions, ft their values from tree diagram. A1 is cso					
(e)	M1 for clear attempt to <u>use</u> the correct formula, must have some correct substitution. ft their (b)					
(f)	M1 for identifying the correct probabilities and forming appropriate fraction of probs. 1 st A1ft for a correct expression using probabilities from their tree Accept exact decimal equivalents. Correct answer only is full marks except in (c) and (d)					

Question	Scheme	Marks
Number 8.		
(a)	$P(X > 168) = P\left(Z > \frac{168 - 160}{5}\right)$	M1
	= P(Z > 1.6)	A1
	= 0.0548 awrt 0.0548	A1
		(3)
(b)	$P(X < w) = P\left(Z < \frac{w - 160}{5}\right)$	
	$\frac{w-160}{2} = -2.3263$	M1 B1
	5	Λ1
	W = 148.57 awrt 148	(3)
(c)	$160 - \mu$ 2.2252	M1
	$\frac{1}{\sigma} = 2.3263$	B1
	$\frac{152 - \mu}{100} = -1.2816$	B1
	σ	
	$160 - \mu = 2.3263\sigma$ 152 $\mu = -1.2816\sigma$	
	$8 = 36079\sigma$	M1
	$\sigma = 2.21$ awrt 2.22	A1
	$\mu = 154.84$ awrt 155	A1 (6)
		[12]
(-)	Notes	
(a)	M1 for an attempt to standardize 168 with 160 and 5 i.e. $\pm \left(\frac{168-160}{5}\right)$ or	or implied by 1.6
	1 st A1 for P($Z > 1.6$) or P($Z < -1.6$) ie $z = 1.6$ and a correct inequality or 1.6 diagram	on a shaded
(h)	Correct answer to (a) implies all 3 marks	
(0)	M1 for attempting $\pm \left(\frac{w-160}{5}\right) = \text{recognizable } z \text{ value } (z > 1)$	
	B1 for $z = \pm 2.3263$ or better. Should be $z = \dots$ or implied so: $1 - 2.3263 = \frac{w}{2}$	$\frac{2-160}{5}$ is M0B0
	A1 for awrt 148. This may be scored for other <i>z</i> values so M1B0A1 is poss For awrt 148 only with no working seen award M1B0A1	ible
(c)	M1 for attempting to standardize 160 or 152 with μ and σ (allow <u>+</u>) and equation	quate to z value
	(z >1)	
	1^{a} B1 for awrt <u>+</u> 2.33 or <u>+</u> 2.32 seen 2^{nd} B1 for awrt <u>+</u> 1.28 seen	
	2^{nd} M1 for attempt to solve their two linear equations in μ and σ leading to	equation in just
	one variable	1 J
	1 st A1 for σ = awrt 2.22. Award when 1 st seen	
	$2^{n\alpha}$ A1 for μ = awrt 155. Correct answer only for part (c) can score all 6 m	arks.
	NB σ = 2.21 commonly comes from <i>z</i> = 2.34 and usually scores M1	B0B1M1A0A1
	The A marks in (c) require both M marks to have been earr	ned

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA026664 January 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH

Mark Scheme (Results)

June 2011

GCE Statistics S1 (6683) Paper 1

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025 or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

June 2011 Publications Code UA028837 All the material in this publication is copyright © Edexcel Ltd 2011

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
 - M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
 - A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
 - B marks are unconditional accuracy marks (independent of M marks)
 - Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- L The second mark is dependent on gaining the first mark

June 2011 Statistics S1 6683 Mark Scheme

Question Number	Scheme	Marks
1. (a)	$S_{yy} = 4305 - \frac{181^2}{8}$ = $\frac{209.875}{210}$ (awrt	M1 A1
		(2)
(b)	$r = \frac{(-)23726.25}{\sqrt{3535237.5 \times "209.875"}} = -0.87104 $ (awrt	M1
	-0.871)	A1
		(2)
(c)	Higher towns have lower temperature or temp. decreases as height increases	B1 (1)
		(1)
(d)	$S_{hh} = 3.5352375$ (awrt 3.54) (condone 3.53)	B1 (1)
(e)	r = -0.87104 (awrt -0.871)	B1ft (1)
		(7 marks)
	Notes	
(a)	M1 for a correct expression. Allow one slip e.g. 4350 for 4305	
(b)	M1 for a correct expression for <i>r</i> , follow through their answer to (a). Allow M1 for ± 0.87 with no working. (-0.871 is M1A1)	Condone no
(c)	 B1 Must mention temperature (o.e.) and height (above sea level) an relationship between them. Must be a correct and sensible come.g. "As temperature increases the height of the sea decreases" simply stating "As temperature increases the height decreases" is B1 altheight increases the temperature decreases" would be better. Treat men ISW "strong negative correlation between height and temp" is B0 (n " as x increases y decreases" is B0 (no mention of height and temp 	d interpret the ment. is B0. BUT hough "As tion of 0.87 as o interpretation) mperature)

Question Number	Scheme	Marks
(d)	B1 accept awrt 3.54 and condone 3.53 (i.e truncation)	
(e)	B1ft for awrt -0.871 or ft their final answer to part (b) to the same accuracy (or 3 sf) < 1 Answer to part (e) must be a number "it's the same" is B0	provided $-1 < r$
2. (a)	awrt ± 1.40	B1
	$\frac{23-\mu}{5} = "1.40"$ (o.e)	M1A1ft
	$\frac{\mu = 16}{16.0}$ (or awrt	A1
	10.0)	(4)
(b)	<u>0.4192</u>	B1 (1)
		(1) 5
	Notes	
(a)	B1 for awrt \pm 1.40 or better seen anywhere. Condone 1.4 instead	of 1.40
	M1 for attempting to standardise with 23 and 5 and μ , accept \pm	
	e.g. $\frac{23-\mu}{25} = 1.40$ can score B1M0 (since using 25 not 5 for s	tandardising)
	$\frac{23-\mu}{5} = 0.9192$ can score B0M1 (since have correct stand	dardisation)
	Can accept equivalent equations e.g. $23 - \mu = 5 \times "1.40"$	
	1 st A1ft for standardised expression = to a z value ($ z > 1$). Signs mu	st be
	compatible.	
	Follow through their z	
	e.g. $\frac{23-\mu}{5}$ = their z where $z > 1$ or $\frac{\mu-23}{5}$ = their z where $z > 1$	ere $z < -1$
	2^{nd} A1 for 16 or awrt 16.0 if they are using a more accurate z	
	Correct answer only scores 4/4 but if any working is seen app	ly scheme
(b)	B1 for 0.4192 (but accept 3sf accuracy if 0.9192 – 0.5 is seen)	

Question Number	Scheme	Marks
3. (a)	$[F(3) = F(2) + P(Y=3) = (0.5 + 0.3)]$ $d = \underline{0.8}$	B1 B1
	b = F(2) - a = 0.5 - 0.1 or $a + b = 0.5c = 1 - F(3)$ or $1 - (a + b + 0.3)$ or $a + b + c = 0.7$ $b = 0.4$	M1 A1
	<u>0.2</u> c =	A1 (5)
(b)	$P(3Y+2 \ge 8) = P(Y \ge 2) \qquad or 1 - P(Y \le 1) \\ = b + 0.3 + c \qquad or 1 - a \qquad = 0.9$	M1 A1ft (2) 7
	Notes	
(a)	Correct answers with no (or irrelevant) working score full n 1^{st} B1for $a = 0.1$ 2^{nd} B1for F(3) = 0.8 or $d = 0.8$ M1for a method for b or c. E.g. sight of $a + b = 0.5$ or $a + b + c =$ If their values satisfy one of these equations then score M1 provaluesare genuine probabilities (i.e. $0)This M1 may be implied by a correct answer for b or c1^{st} A1for b or P(2) = 0.42^{nd} A1for c or P(3) = 0.2$	narks 0.7 vided their
(b)	M1 for rearranging to $P(Y \ge 2)$ or $1 - P(Y \le 1)$ or selecting cases $Y =$ A1ft for 0.3 + their <i>b</i> + their <i>c</i> or 1 - their <i>a</i> , provided final answer values are probabilities.	2, 3 and 4 < 1 and their

Question Number	Scheme	Marks
4. (a)	$(z = \pm) \frac{15 - 16.12}{1.6} (= -0.70)$ P(Z < -0.70) = 1 - 0.7580 = <u>0.2420</u> (awrt 0.242)	M1 M1 A1 (3)
(b)	$[P(T < t) = 0.30 \text{ implies}] z = \frac{t - 16.12}{1.6} = -0.5244$ $t - 16.12 0.5244 z = 16.12 1.6 z = 16.12$	M1 A1 M1
	$\frac{-1.6}{1.6} = -0.3244 \implies t = 10.12 - 1.6 \times 0.3244$ $t = \text{awrt} \underline{15.28} \text{(allow awrt 15.28/9)}$	A1 (4) 7
	Notes	,
(a)	Allow slips e.g. 16.2 for 16.12 for 1 st M1 in (a) and (b)1 st M1for standardising expression with 15, 16.12 and 1.6 - allow ±2 nd M1for 1 - a probability (> 0.5) from tables or calculator based on the valueCorrect answer only scores 3/3	eir standardised
(b)	In part (b) they can use any letter or symbol instead of 1 st M1 for standardising with t (o.e.), 16.12 and 1.6, allow \pm , and setting value 1 st A1 for an equation with $z = \pm 0.5244$ or better e.g. $\frac{t-16.12}{1.6} = \pm 0.52$ (or 0.525) scores M1 (but A0) 2 nd M1 for solving their linear equation as far as $t = a \pm b \times 1.6$. Not dep M1	t g equal to a z bendent on 1 st
	M1 e.g. solving $\frac{t-16.12}{1.6} = 0.3$ to give $t = 16.12 + 1.6 \times 0.3$ scores this Allow $\frac{t-16.12}{1.6^2} = 0.3$ to give $t = 16.12 + 1.6^2 \times 0.3$ to score M1 to 2^{nd} A1 dependent on both M marks. Allow awrt 15.28 or awrt 15.29 Condone awrt 15.3 if a correct expression for $t =$ is seen. Answers with no working: 15.28 is M1A1M1A1, 15.29 is M1A0M1A1, 15.3 is M1A0M1	s M1 >0 1A0

Question Number	Scheme	Marks	
5. (a)	<u>10.5</u>	B1 (1)	
(b)	$(Q_2 =)$ (15.5+) $\frac{\frac{1}{2} \times 30 - 14}{8} \times 3$ or $\frac{\frac{1}{2} \times 31 - 14}{8} \times 3$	M1	
	= <u>15.875 or 16.0625</u>	A1 (2)	
(c)	$\overline{x} = \frac{477.5}{30} = \underline{15.9}$ (15.918) [Accept $\frac{191}{12}$ or $15\frac{11}{12}$]	M1, A1	
	$\sigma = \sqrt{\frac{8603.75}{30} - \overline{x}^2} = \underline{5.78} (\text{accept } s = 5.88)$	M1A1ft, A1	
(d)	Since <u>mean and median are similar (or equal or very close)</u> a normal distribution may be suitable. [Allow mean or median close to <u>mode/modal class</u>]	(5) B1	
(e)	$Q_3 - Q_2 (= 8) > (4.5 =)Q_2 - Q_1$	(1) M1	
	Therefore <u>positive skew</u>	A1 (2)	
	Notos	(11 marks)	
	In parts (a) to (c) a correct answer with no working scores full marks for	or that value.	
(a)	B1 for 10.5 which may be in the table		
(b)	M1 for a correct ratio and times 3, ignore the lower boundary for this matrix A1 for awrt 15.9 (if $n = 30$ used) or awrt 16.1 (if $n+1 = 31$ is used)	ark	
(c)	1 st M1 for attempt at $\sum fx$ (this may be seen in the table as fx: 10, 73.5, 7	0, 136, 82, 106	
	[condone 1 slip] or awrt 500) and use of $\frac{\sum fx}{\sum f}$ or a correct expression for mean.		
	1 st A1 for awrt 15.9		
	2 nd M1 for an attempt at σ or σ^2 , can ft their mean, condone mis-labelling $\sigma^2 = $ etc Allow use of their $\sum fx^2$ (awrt 9000)		
	2^{nd} A1ft for a correct expression including square root, ft their mean but not their $\sum fx^2$.		
	No label or correct label is OK but wrong label (e.g. $\sigma^2 = $) is	A0	
	3^{rd} A1 for awrt 5.78, allow $s = awrt 5.88$. SC Allow M1A1A0 for awrt 5	5.79 if \overline{x} correct	
(d)	B1 for a reason implying or stating symmetry. "Time is continuous" or "evenlyB0	v distributed" is	

Question Number	Scheme	Marks
(e)	 M1 for a clear reason or comparison, values not essential but comparison have been found is required. A1 for stating "positive skew". Condone just "positive" but "positive cor Do not allow arguments based on mean and median since this part different set of data. 	implying they relation" is A0 relates to a
6. (a)	$P(J \cup K) = 1 - 0.7 \text{ or } 0.1 + 0.15 + 0.05 = 0.3$	B1 (1)
(b)	P(K) = 0.05 + 0.15 or "0.3" - 0.25 + 0.15 or "0.3" = 0.25 + P(K) - 0.15	(1) M1
	May be seen on Venn diagram $= 0.2$	A1 (2)
(c)	$\left[P(K \mid J) \right] = \frac{P(K \cap J)}{P(J)}$	M1
	$=\frac{0.15}{0.25}$	A1
	$=\frac{3}{5} \text{ or } 0.6$	A1
(d)	$P(J) \times P(K) = 0.25 \times 0.2 (= 0.05), P(J \cap K) = 0.15 \text{ or}$	(3)
	P(K J) = 0.6, P(K) = 0.2 or may see $P(J/K) = 0.75$ and $P(J) = 0.25$	M1
	not equal therefore not independent	A1ft (2)
(e)	Not independent so confirms the teacher's suspicion <u>or</u> they are linked (This requires a statement about independence in (d) or in (a))	B1ft (1)
	(This requires a statement about independence in (d) of in (e))	(9 marks)

Question	Scheme			Marks
Number		Notes		
(b)	M1 P(<i>K</i>)	for a complete method, follow through their 0.3, leading t	to a linear	equation for
		NB You may see this Venn diagram.		V V
		A correct diagram (Venn or table) implies M1 in (b)	J	
		Need not include box or 0.7	0.10	0.15 0.05
		Correct answer only is 2/2		
		In parts (c) and (d) they must have defined A and B		0.7
(c)	M1	for a correct expression (including ratio) in symbols.		
	$1^{st} A1$	for a correct ratio of probabilities (if this is seen the M1 is	s awarded	by implication)
	and a s	Must be in (c). Condone no LHS but wrong LHS (e.g. P	(<i>K</i>) or P(<i>J</i> /	(K)) is M0A0
	2 nd A1	for correct answer as printed only. Correct answer only	3/3	
		Mark (d) and (a) together		
(b)	M1	for a correct comparison of known probabilities for an ind	denendenc	e test - ft their
(u)	1011	values, E.g. $P(J) \times P(K)$ with $P(J \cap K)$ or $P(K J)$ with $P(I \cap K)$	(K) [Must]	have
	expres	sions]	() [
	The values of these probabilities should be given unless they are in the question or			
		stated elsewhere.	5	1
	A1ft	for correct calculations and correct comment for their pro	babilities	
(e)	B1ft	ft their conclusion on independence so not independent co	onfirms	
		teacherindependent contradicts teacher.	1 14	
		Methods leading to negative probabilities shoul	d score M	0

Question	:	Scheme		Marks	
7.					
(9)	$(S_{r} =)25291 - \frac{186 \times 1085}{1000}$			M1	
(a)	$(5_{fh} -)25251$ 8			1011	
	$= \underline{6}$	<u>4.75</u>	(accept 64.8)	A1	(2)
	"64 75"				(2)
(b)	$b = \frac{39.5}{39.5}, =$	<u>1.6392</u>	(awrt 1.6)	M1, A1	
	$a = \frac{1085}{8} - b \times \frac{186}{8}, = 9$	7.512	(awrt 97.5)	M1, A1	
	8 8	ļ	n = 97.5 + 1.64f	Alft (dep on M	1 M 1)
		-	<u> </u>	(F	(5)
(c)	$h = 97.5 + 1.64 \times 25$, =	<u>138~139</u>	(final answer in [138, 139])	M1, A1	
(d)	Should be reliable, since $25 \text{ cm}(\text{or } f)$	or footlengt	h) is within the range of the data	B1 B1	(2)
(u)	Should be rendere, since 25 cm(orj	or rootienge	ing is writing the range of the data	D 1, D 1	(2)
	Line is for children – a different e	equation w	ould apply to adults		
(e)	Or Children are still growing height	will incre	ase more than foot length	B 1	
	Clindren ale sun growing, height	will increa	ise more than root length		(1)
					12
			Notes		
(a)	r = 0.87 M1 for attempting a correct ex	t so do not xpression [allow a copying slip e.g. 25921]	
()	in the month of the second of	-p		1	
(b)	1 st M1 for a correct expression for <i>b</i> , ft their part (a) but not $S_{fh} = 25291$				
	1 st A1 for awrt 1.6				
	2^{IIII} M1 for use of $a = h - b \times f$, ft their value for b. Must use h and f not values from table.				
	$2^{n\alpha}$ A1 for awrt 97.5 [NB $a = 135 - 1.63 \times 23 = 97.51$ but M0A0 since not using h and f]				
	3^{rd} A1ft for an equation for <i>h</i> and <i>f</i> with <u>their</u> coefficients to 3sf. Dependent on both Ms				
	Must be 3sf not awrt. Give this r	nark if seer	n in (c). Equation must be in h	and f not y and	d <i>x</i> .
	M1 for using their equation of	nd f _ 75 tr	find h		
(0)	A1 for their final answer in []	$10^{\circ} = 23^{\circ}$ (c) 138, 1391.	Can give if they have 137.7 b	ut round to 13	38
		, T			
(d)	1^{st} B1 for suggesting it is reliabl	e			D 1
	² B1 for mentioning that 25 cm Use of "it" or a comment	18 Within r that height	is in range is B0 but apply ISW	$\frac{1}{7}$	BI
		that height	is in funge is bo out upply is w		
(e)	B1 for some comment that st	ates a diffe	rence between children and tead	chers(adults)	
	Must mention <u>teacher/adults</u> and <u>children</u>				
	e.g. ".teacher is not in same age group as the children", "equation is for children not adults" "children and adults are different populations"				
	"teacher will be taller" is H	30 since no	mention of children.		
	"equation is <u>only</u> valid for	children" i	s OK since "only" implies not s	uitable for ad	ults
	<u>Or</u> Reference to different group	owth rates			

PMT

Question Number	Scheme	Marks
8.		
(a)	$1 = p + (0.25 + 0.25 + 0.2 + 0.2), \implies p = \frac{1}{10} \text{ or } 0.1$	M1, A1
	—	(2)
(b)	$E(S) = \frac{1}{4} + 2 \times \frac{1}{4} + 4 \times \frac{1}{5} + 5 \times \frac{1}{5}, \text{ (or equiv. in decimals)} = \underline{2.55}$	M1, A1
		(2)
(c)	$E(S^2) = \frac{1}{4} + \frac{2^2}{4} + \frac{4^2}{5} + \frac{5^2}{5}$ or $0.25 + 1 + 3.2 + 5 = 9.45$ (*)	M1, A1cso
	4 4 5 5	(2)
	$Var(S) = 9.45 - (F(S))^2 = -2.9475 \text{ or } \frac{1179}{2}$ (accept awrt 2.95)	M1, A1
(a)	$Var(3) = 9.43 - (E(3))^2$, $= \frac{2.947501}{400}$ (accept awit 2.93)	
	2	(2)
(e)	P(5 and 5) = $\left(\frac{1}{5}\right)^2$, = $\frac{1}{25}$ or 0.04	WII, AI
		(2)
(f)	P(4, 4, 2) = $\left(\frac{1}{5}\right)^2 \times \frac{1}{4} \times 3$ (= 0.03 or $\frac{3}{100}$)	M1, M1
	$P(4, 4, 4) = (1)^3$ (= 0.008 or $\frac{1}{1}$)	B1
	$P(T_{om} \text{ wing in } 2 \text{ gring}) = 0.028$	A 1
	P(10III wills III 3 spins) = 0.038	(4)
(g)	$P(\overline{5} \cap 5 \cap 5) + P(5 \cap \overline{5} \cap 5) = \frac{4}{5} \times (\frac{1}{5})^2 \times 2 = 0.064 \text{ or } \frac{8}{125}$	M1, M1, A1
		(3)
		17
(9)	$\frac{1}{1}$ Notes $\frac{1}{1}$ M1 for clear attempt to use sum of probabilities = 1 (fractions or decimals)	Ans only 2/2
(a)	in the clear attempt to use sum of probabilities – 1 (fractions of decimals)	Ans only 2/2
(b)	M1 for at least 2 correct terms $(\neq 0)$ of the expression. 2.55 with no working	ng scores M1A1
(c)	Any division by k (usually 5) in (b) or (c) or (d) scores MU M1 for at least 3 correct non-zero terms of the expression seen allow de) cimals
	A1cso for the full expression (with 9.45) seen. Must be cso but can ignore w	rong <i>p</i> .
		$(\mathbf{y})^2 \cdot \mathbf{p}(\mathbf{y})$
(d)	1011 For a correct expression (9.45 seen), can it their E(S). May see $\sum (x - 2.55)$	P(X = x)
	An accept awrt 2.95 Answer only can score with for correct it and Al for Answer only in (e) and (f) is full marks, in (g) is no marks	awn 2.95
(e)	M1 for $(\frac{1}{5})^2$ Condone P(5)×P(5) = 0.25×0.25. [Beware 0.4 is A0]	
(f)	1 st M1 for $\left(\frac{1}{5}\right)^2 \times \frac{1}{4}$ or 0.01 seen	
	2^{nd} M1 for multiplying a $p^2 q$ probability by $3(p, q \in (0,1))$. B1 for $(0,2)^3$ or	better seen
		-
(g)	1^{st} M1 for $\frac{4}{5} \times \left(\frac{1}{5}\right)^2$ or all cases considered and correct attempt at probabilities	es.
	2^{nd} M1 for multiplying a $p^2(1-p)$ probability by 2. Beware $(0.4)^3 = 0.064$ i	s M0M0A0

GCE Statistics S1 (6683) June 2011

PhysicsAndMathsTutor.com

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA028837 June 2011

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE $\,$

Llywodraeth Cynulliad Cymru Welsh Assembly Government

Mark Scheme (Results)

January 2012

GCE Statistics S1 (6683) Paper 1

PMT

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at <u>www.edexcel.com</u>.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our **Ask The Expert** email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

January 2012 Publications Code UA030899 All the material in this publication is copyright © Pearson Education Ltd 2012

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol *∖* will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

PhysicsAndMathsTutor.com General Principals for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q), \text{ where } |pq| = |c| \text{ , leading to } x = \dots$ $(ax^{2} + bx + c) = (mx + p)(nx + q), \text{ where } |pq| = |c| \text{ and } |mn| = |a| \text{ , leading to } x = \dots$

2. Formula

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. Completing the square

Solving $x^2 + bx + c = 0$: $(x \pm \frac{b}{2})^2 \pm q \pm c, q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^n \rightarrow x^{n-1}$)

2. Integration

Power of at least one term increased by 1. ($x^n \rightarrow x^{n+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

January 2012 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks
1 (a)	14, 5	M1 A1
		(2)
(b)	21 + 45 + 3 = 69	M1 A1
		(2)
		Total 4
NOTES		
(a)	M1 for 2x7 or 14 or 5x1 or 5	
	A1 for both 14 and 5	
(b)	M1 for 21+45+(0 <frequency <9)<="" td=""><td></td></frequency>	
	A1 for 69 only.	
	69 no working, award M1A1 Incorrect answer with no working M0A0	

Question Number	Scheme	Marks	
2 (a)	(<i>R</i> and <i>S</i> are mutually) exclusive.	B1	(1)
(b)	$\frac{2}{3} = \frac{1}{4} + P(B) - P(A \cap B)$ use of Addition Rule	M1	(1)
	$\frac{2}{3} = \frac{1}{4} + P(B) - \frac{1}{4} \times P(B)$ use of independence	M1 A1	
	$\frac{5}{12} = \frac{3}{4} P(B)$		
	$P(B) = \frac{5}{9}$	A1 ((4)
(c)	$P(A' \cap B) = \frac{3}{4} \times \frac{5}{9} = \frac{15}{36} = \frac{5}{12}$	M1A1ft	(2)
(d)	1	((2)
	$P(B' A) = \frac{(1-(b)) \times 0.25}{0.25}$ or $P(B')$ or $\frac{\overline{9}}{1}$	M1	
	4		
	$=\frac{4}{9}$	A1	
		((2)
NOTES		lota	19
(a)	B1 for '(mutually) exclusive' or 'cannot occur at the same time' seen or equivalent.		
	'Intersection is zero' or 'no overlaps' without further explanation is B0.		
(b)	probability substituted. Intersection must be explicitly considered for this mark.		
	Accept $\frac{2}{3} = \frac{1}{4} + P(B) - 0$ for M1.		
	M1 for $P(A \cap B) = \frac{1}{4}P(B)$		
	A1 for completely correct equation or equivalent.		
	A1 for $\frac{5}{9}$ or exact equivalent		
	Venn Diagram with 2 overlapping closed curves and correct values possibly without		
	$\frac{1}{3}$, award M1M1A1.		
(c)	M1 for $\frac{3}{4}$ x 'their P(B)' or 'their P(B)' - P(A \cap B) or P(AUB)-P(B) = $\frac{2}{3} - \frac{1}{4}$		
	Or $P(A' \cap B) = P(A') + \text{'their } P(B)' - P(A'UB) = \frac{3}{4} + \frac{5}{9} - \frac{8}{9}$		
	A1 for $\frac{5}{12}$ or follow through from their method. Accept exact equivalent.		
	Correct answer only with no working M1A1 but must be clearly labelled (c).		

Question Number	Scheme	Marks
3 (a)	5 + 2k + 7 + k = 1	M1
	$\frac{1}{21} + \frac{1}{21} + \frac{1}{21} + \frac{1}{21} = 1$	
	$\frac{12+3k}{12} = 1$	
	21	
	k = 3 * AG required for both methods	Al
		(2)
(b)	$\frac{11}{1}$	D1
	21	DI (1)
(c)	5 6 7 1	(1)
(0)	$E(X) = 2 \times \frac{3}{21} + 3 \times \frac{3}{21} + 4 \times \frac{7}{21} + 6 \times \frac{7}{7}$	M1
	-3^{11} or 74 or a straight 3.52	
	$=3\frac{1}{21}$ or $\frac{1}{21}$ or $\frac{1}{21}$ or $\frac{1}{21}$ or $\frac{1}{21}$	A1
		(2)
(d)	$E(\mathbf{y}^2) = 2^2 \times 5 + 2^2 \times 6 + 4^2 \times 7 + 6^2 \times 1$	
	$E(X) = 2 \times \frac{1}{21} + 3 \times \frac{1}{21} + 4 \times \frac{1}{21} + 6 \times \frac{1}{7}$	M1
	= 14	A1
		(2)
(e)	$(.11)^2$	
	$Var(X) = 14 - \left(\frac{3}{21}\right)$	M1
	257 698	
	$=1\frac{1}{441}$ or $\frac{1}{441}$ or awrt 1.6	A1
	$Var(7X - 5) = 7^2 Var(X)$	M1
	$= 77\frac{5}{2}$ or $\frac{698}{10}$ or awrt 77.6	
	9 9 9	Al
		(4) Total 11
NOTES		1014111
(a)	M1 Award for verification. Sub in k=3 and show $\sum x P(X = x) = 1$. Require at least	
	three correct terms seen or line 2 of scheme.	
	A1 Correct solution only including verification.	
(b)	B1 Award for exact equivalent.	
(c)	M1 At least two correct terms required for method, follow through 'their k' for method. Correct answer only, award M1 A1	
(d)	M1 At least two correct terms required for method. M0 if probability is squared.	
	Correct answer only, award M1 A1. Accept exact equivalent of 14 for A1.	
(e)	M1 for use of correct formula in both. 1.6 can be implied by correct final answer.	
	Working needs to be clearly labelled to award first method mark without second	
	stage of calculation. If a new table for values of $7X - 5$ is used so $Y = 7X - 5$	
	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
	$E(Y^{-}) = \frac{1}{21}$; $Var(Y) = 77/9$ or $\frac{1}{9}$ or awrt 77.6 Award M1A1; M1A1	
	If any attempt to divide by 4 seen as part of working award M0 for that part.	

Question Number	Scheme	Marks
4 (a)	60	B1
(b)	$Q_1 = 46$ $Q_2 = 56$ $Q_3 = 64$	(1) B1 B1 B1 (2)
(c)	mean = 55.48 or $\frac{2497}{45}$ awrt 55.5	(3) B1
	$sd = \sqrt{\frac{143369}{45} - \left(\frac{2497}{45}\right)^2}$	M1
	= 10.342 ($s = 10.459$) anything which rounds to 10.3 (or s = 10.5)	A1 (3)
(d)	Mean < median < mode or $Q_2 - Q_1 > Q_3 - Q_2$ with or without their numbers or median closer to upper quartile (than lower quartile) or (mean-median)/sd <0;	B1
	negative skew;	B1dep
		(2)
(e)	$mean = (55-5) \times 0.9$	M1
	= 45	A1
	$sd = 10 \times 0.9$	M1
	= 9	A1
		(4) Total 13
NOTES		1011115
(a)	B1 60 only	
(b)	Award each B1 for correct answer only in this order.	
(c)	M1 for use of correct formula, including square root. Correct answers with no working B1M1A1.	
(d)	B1 any correct comparison of a pair of mean, median and mode using their values. B1 for 'negative skew' or allow (almost) symmetrical dependent upon correct reason.	
(e)	M1 for $(55 \text{ or } 55.5 - 5) \times 0.9$ A1 for the correct answer only. M1 for $(10 \text{ or } 10.3 \text{ or } 10.5)) \times 0.9$ A1 for the correct answer only.	

PhysicsAndMathsTutor.com

Question Number	Scheme		Mark	s
5 (a)	$S_{tt} = 2688 - \frac{158^2}{10} = 191.6$	awrt 192	M1 A1	
	$S_{\rm tw} = 1760.62 - \frac{158 \times 111.75}{10} = -5.03$	awrt -5.03	A1	
(b)	$r = \frac{-5.03}{\sqrt{191.6 \times 0.16}} = -0.908469$	awrt -0.908(5)	M1A1	(3)
(c)	$b = \frac{-5.03}{191.6} = -0.0263$	awrt -0.026	M1 A1	(2)
	$a = 11.175 + 0.0263 \times 15.8$ = 11.59		M1	
	w = 11.6 - 0.0263t		A1	
(d)	The explanatory variable is the age of each coin. This is be weight varies.	ecause the age is set and the	B1 B1	(4)
				(2)
(e) (i) (ii)	awrt 11.5 Decrease(in weight of coin of 0.1052 g) = 0.1 or -0.1 o	r increase of -0.1 awrt(-0.1)	B1 B1	(2)
(f)	Decrease; removing the fake will result in a better linear fi	it so r will be closer to -1	B1;B1	(2)
NOTES			Tota	(2) al 15
NOTES (a)	M1 for correct attempt at either method,			
(b) (c)	A1 awrt -5.03 M1 for correct attempt at use of formula, square root require A1 awrt -0.908(5) M1 require 'their -5.03' as numerator and /their 191.6' as A1 awrt -0.026 M1 for use of correct formula with <i>b</i> or 'their <i>b</i> '; require - correct place. A1 for equation as written with values awrt 3 sf. with <i>w</i> ar Accept fractional answers that are accurate to 3sf when ex-	ired. denominator. or + and values in the rd <i>t</i> .		
(d)	B1 for 'Age' or <i>t</i> or 'years' B1 for 'you use age / t to predict w' or 'you can control t/ age' or similar	age' or 'weight depends on		
(e) (f)	B1 awrt 11.5 B1 awrt -0.1 but 'decrease of -0.1' is B0. B1 for Decrease only but 'mod r increases' explicitly state	ed in words or symbols		
	award B1. B1 accept 'stronger correlation' or 'increase in correlation closer to -1' or 'points are closer to a straight line' or 'poin equivalent	a' or 'better linear fit' or ' <i>r</i> nt is an outlier' or		

PhysicsAndMathsTutor.com

Special Case 1	Attempt to calculate S_{tw}		
Case 1	$\sum tw = 1669.62, \sum t = 153, \sum w = 91.75 \text{ or } S_{tw} = 1660.62 - \frac{153 \times 91.75}{9} \text{ or awrt } 101$		
	or $S_{tw} > 0$ with some calculation	B1	
	"Increase"	B1	
Special Case 2	Attempt to calculate S_{ww}		(2)
	$\sum w^2 = 1248.96625 - 400 = 848.96625 \text{ or awrt } 849 \text{ or } S_{ww} = 848.96625 - \frac{91.75^2}{9}$		
	or awrt -86.4 or $S_{ww} < 0$	B2	
Special	Argument based on standard deviation.		(2)
Cuse 5	e.g. $\sigma_{w} \approx 0.126$ and $\overline{w} = 11.175$ so fake coin is over 69 sds away from the mean	B1	
	'(very) unlikely' or 'impossible'	B1	
			(2)

PMT

Question Number	Scheme	Marks
(b) (c) (d) (e)	3 closed curves and 25 in correct place $15,10,5$ $15,3,20$ 15 10 25 20 20 20 20 20 20 20 20	M1 A1 A1 B1 (4) M1 A1 (2) M1 A1 (2) M1 A1 (2) M1 A1 (2) M1 A1 (3)
		Total 13
NOTES (b) (c) (d) (e)	M1 for 'their 7'/100 seen. A1 Correct answer only In parts (c) and (d) we require "/100" for methods to be awarded. Also check their values and award correct method if they follow from their Venn Diagram. M1 For ('their 3'+'their 5')/100. $\frac{8}{48}$ award M0. A1 Correct answer only or equivalent. M1 Accept sum of their 4 values from the Venn diagram /100. A1 Correct answer only or equivalent M1 Attempt to use correct formula for conditional probability. Award for correct formula and a denominator of 'their 65' or 'their 65/100'. A1 for 'their 15'/65 only.	
	In all parts correct answers with no working award full marks.	

Question Number	Scheme	Marks
7 (a)	P(W < 224) = P $\left(z < \frac{224 - 232}{5}\right)$ = P (z < -1.6)	M1
	= 1 - 0.9452 = 0.0548 awrt 0.0548	M1 A1 (3)
(b)	0.5 - 0.2 = 0.3 0.3 or 0.7 seen	M1
	$\frac{w-232}{5} = 0.5244$ 0.5244 seen w = 234.622 awrt 235	B1; M1 A1
(c)	$0.2 \times (1 - 0.2)$ 2 × 0.8 × (1 - 0.8) = 0.32	(4) M1 M1 A1
		(3) Total 10
NOTES		
(a)	M1 for standardising with 232 and 5 (i.e. not 5^2 or $\sqrt{5}$) Accept $\pm \frac{w-232}{w-232}$	
(b)	M1 for standardising with 232 and 5. (i.e. not 5 of 12). Accept $\pm \frac{5}{5}$. M1 for finding (1- a probability > 0.5) A1 awrt 0.0548 M1 Can be implied by use of ± 0.5244 or $\pm (0.52 \text{ to } 0.53)$ B1 for ± 0.5244 only. Second M1 standardise with 232 and 5 and equate to z value of (0.52 to 0.53) or (0.84 to 0.85) 1 - z used award second M0.	
	Require consistent signs i.e. $\frac{232 - w}{5} = -0.5244$ or negative z value for M1.	
	A1 dependent upon second M mark for awrt 235 but see note below. Common errors involving probabilities and not z values: P(Z<0.2) = 0.5793 used instead of z value gives awrt 235 but award M0B0M0A0 P(Z<0.8) = 0.7881 used instead of z value award M0B0M0A0. M1B0M0A0 for 0.6179, M1B0M0A0 for 0.7580	
(c)	M1 for 0.16 seen M1 for $2 \times p(1-p)$ ' A1 0.32 correct answer only	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA030899 January 2012

For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE $\,$

Mark Scheme (Results)

Summer 2012

GCE Statistics S1 (6683) Paper 1

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: <u>www.pearson.com/uk</u>

Summer 2012 Publications Code UA033137 All the material in this publication is copyright © Pearson Education Ltd 2012

Summer 2012 6683 Statistics S1 Mark Scheme

General Marking Guidance

- •All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- •Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- •Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- •There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- •All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- •Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- •When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for `knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used if you are using the annotation facility on ePEN.

- bod benefit of doubt
- ft follow through
- the symbol / will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are `correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.

General Principles for Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

 $(x^{2} + bx + c) = (x + p)(x + q)$, where |pq| = |c|, leading to x = ... $(ax^{2} + bx + c) = (mx + p)(nx + q)$, where |pq| = |c| and |mn| = |a|, leading to x = ...

2. <u>Formula</u>

Attempt to use <u>correct</u> formula (with values for a, b and c), leading to x = ...

3. Completing the square

Solving $x^2 + bx + c = 0$: $(x \pm \frac{b}{2})^2 \pm q \pm c, q \neq 0$, leading to x = ...

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. ($x^* \rightarrow x^{*-1}$)

2. Integration

Power of at least one term increased by 1. ($x^* \rightarrow x^{*+1}$)

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are mistakes in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

PhysicsAndMathsTutor.com Summer 2012 6683 Statistics S1 Mark Scheme

Question	Scheme	Marks		
1.	x -1 0 1 2	M1		
(a)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	A1		
	$6k = 1 \implies k = \frac{1}{6} (*)$	A1cso (3)		
(b)	$[E(X)] = -4k \ (+0+0) + 2k \underline{\text{or}} \ -2k \underline{\text{or}} \ -1 \times \frac{4}{6} + 2 \times \frac{1}{6}$	M1		
	$=-\frac{1}{3}$ (or $-0.$	A1 (2)		
(c)	$\left[E(X^{2}) \right] = (-1)^{2} \times 4k + (0+0) + 2^{2}k \underline{\text{or}} 4k + 4k \underline{\text{or}} (-1)^{2} \times \frac{4}{6} + 2^{2} \times \frac{1}{6} (\text{o.e.})$	M1		
	$=\frac{4}{3} \qquad (*)$	A1cso (2)		
(d)	$[\operatorname{Var}(X)] = \frac{4}{3} - \left(-\frac{1}{3}\right)^2 \underline{\operatorname{or}} \ 8k - 4k^2 = \begin{bmatrix} \frac{11}{9} \end{bmatrix} \qquad \begin{array}{ccc} Y = 1 - 3X : 4 & 1 & -2 & -5 \\ \operatorname{Prob:} & 4k & k & 0 & k \\ & & \operatorname{And} \operatorname{E}(Y) = 12k \end{array}$	M1		
	$Var(1-3X) = (-3)^2 Var(X)$ or $9Var(X)$ $E(Y^2) = 90k$ and $Var(Y) = 90k - 144k^2$	M1		
	= 11	A1 cao (3)		
		[10]		
	Notes			
(a)	M1 for attempt at $P(X = x)$ with at least 2 correct. Do not give for 4, 1, etc but $\frac{1}{6}$	$(\frac{1}{6}, \frac{1}{6})$ are OK		
	1 st A1 for at least $4k + k + k = 1$ seen. Allow $\frac{4}{6} + \frac{1}{6} + \frac{1}{6} = 1$ [Must see = 1]			
	2^{nd} A1cso provided previous 2 marks are scored and no incorrect working seen It's not essential to see $P(X = -1) = 4k$ at but if were alwassized evaluations in the second secon			
	P(X = 2) = 4k and $P(X = -1) = k$ are seen then the final A1 is lost.			
Verify	To score final A1cso there must be a comment such as "therefore $k = \frac{1}{6}$ "			
	Division by 4 (or any other <i>n</i>) in (b), (c) or (d) is M0. Do not apply ISW			
(b)	M1 for a full correct expression for $E(X)$, it their <u>probabilities</u> . Allow in term 1	s of k .		
	A1 for $-\frac{1}{3}$ or exact equivalent only. Just $-\frac{1}{3}$ scores M1A1			
(c)	M1 for evidence of both non-zero terms seen. May be simplified but 2 terms needed.			
	A1cso for M1 seen leading to $\frac{4}{3}$ or any exact equivalent. Condone $-1^2 \times 4k$ but not $-4k$			
(d)	1 st M1 for correct attempt at $Var(X)$ - follow through their $E(X)$ and allow in terms of k Award if a correct formula is seen and some correct substitution made.			
	2^{na} M1for correct use of Var($aX+b$). Condone -3^2 Var(X) if it eventually yields 9Var(X)A1caofor 11 only			

Question	Scheme	Mar	ks
2. (a)	$\left[S_{xy} = \right] 23070 - \frac{477 \times 480}{12} [= 3990]$	B1	
	$r = \frac{"3990"}{\sqrt{5606.25 \times 4244}}$	M1	
	= 0.81799 awrt 0.818	A1	(3)
(b)	0.818	B1ft	(1)
(c)	Positive correlation <u>or</u> value of r is close to 1 <u>or</u> value of $r > 0$ (NOT "high/ strong correlation")	B1	
	So there <u>is support</u> for the bank's claim <u>or</u> "increase in unemployment is accompanied by increase in house repossessions"	B1	(2)
			[6]
	Notes		
(a)	Marks for part (a) must be seen in (a), do not award if only seen in (b)	
	B1 for a correct expression for S_{xy}		
	M1 for correct attempt at r f.t. their 3990 but $\frac{23070}{\sqrt{5606.25 \times 4244}}$ is M0		
	A1 for awrt 0.818 If an answer of 0.82 only is seen then B1M1A0 can be give	n	
(b)	B1ft for awrt 0.818 or f.t. their answer to part (a) for $ r < 1$. Allow 2sf or 1sf follow through Answer in (b) must be correct or match one of their answers in (a). Must be a number.		
(c)	1 st B1 for a reason of positive correlation (allow even if $r > 1$) "positive skew" or "positive gradient" is B0 but 2 nd B1 is still possible		
	2 nd B1 for a comment that suggest this supports the claim. Marks in (c) are independent but first B1 requires some idea of <u>positive</u> corrections.	relation	
(c) SC	If $ r < 0.2$ allow this alternative to the mark scheme:		
	2^{nd} B1 for a comment that says this does <u>not</u> support the bank's claim		

Ques	stion	Scheme	Mar	KS
4.	(a)	B, W or T, W [accept $B \cup T, W$ or $B \cap T, W$] [Condone P(B), P(W) etc]	B1	
		Since there is no <u>overlap</u> between the events <u>or</u> cannot happen together (o.e.) (Accept comment in context e.g. "no one walks and takes the train")	B1	(2)
	(b)	e.g. $P(B) = \frac{9}{25}$, $P(T) = \frac{8}{25}$, $P(B \cap T) = \frac{5}{25}$	M1	
		$P(B \cap T) \neq P(B) \times P(T)$ [0.2 \neq 0.36 \times 0.32 = 0.1152 o.e.]	M1	
		So B and T are <u>not</u> independent	Alcso	(3)
	(c)	$[P(W) =] \frac{7}{25} \text{or} 0.28$	B1	(1)
	(d)	$[P(B \cap T) =] \frac{5}{25} \underline{\text{or}} \frac{1}{5} \underline{\text{or}} 0.2$	B1	(1)
	(e)	$[P(T B) =] \frac{P(T \cap B)}{P(B)} = \frac{"(d)"}{(5+4)/25}$	M1	
		$=\frac{5}{9}$ or 0.5°	A1	(2)
				[0]
		Notes		_[>]
	(a)	1 st B1 for a suitable pair. Do not accept universally exclusive pairs such as <i>B</i> and <i>I</i> 2 nd B1 for any <u>correct</u> statement. Accept use of symbols e.g.: $B \cap W = \emptyset$ or $P(T \otimes U = 0)$ But $T \cap W = 0$ is B0 (since it is not a correct statement)	$G' \text{ etc} \\ \cap W) = 0$) etc
	(b)	 1st M1 for an attempt at all required probabilities with labels for a suitable test (allow one error). Accept use of <i>A</i> and <i>B</i> as long as they can be identified as <i>B</i> and <i>T</i> by correct probabilities Must be probabilities not integers such as 5, 9, 8 etc for both these M marks 2nd M1 for P(B)×P(T) evaluated (correct for <u>their</u> probabilities) <u>or</u> P(B ∩ T) ≠ P(B)×P(T) stated or implied in symbols or using their probabilities. <u>or</u> P(B T) ≠ P(B) <u>or</u> P(T B) ≠ P(T) stated or implied in symbols or using their probabilities. A1 for a conclusion of <u>not</u> independent. Requires all probabilities used to be correct and seen. This A mark is dependent on both Ms 		ror). ities ties. seen.
		NB $P(B T) = \frac{5}{8} \& P(B) = \frac{9}{25}$ or $P(T B) = \frac{5}{9} \& P(T) = \frac{8}{25}$ seen, followed by conclusion scores $3/3$	y a correc	xt
	(e)	M1 for a correct ratio of probabilities e.g. $\frac{5/25}{(5+4)/25}$ or $\frac{5}{5+4}$ or A correct ratio expression and at least one correct (or correct f.t.) probability su A1 for $\frac{5}{9}$ with no incorrect working seen but $\frac{5}{9}$ following from P(B T) is 0/2. $\frac{5}{9}$	ubstitutec	l. s 2/2

PhysicsAndMathsTutor.com

Question	Scheme		
5. (a)	One large square = $\frac{450}{"22.5"}$ or one small	square = $\frac{450}{"562.5"}$ (o.e. e.g. $\frac{"562.5"}{450}$)	M1
	One large square = $20 \text{ cars } \underline{\text{or}}$ one small square = $0.8 \text{ cars } \underline{\text{or}} 1 \text{ car} = 1.25 \text{ squares}$ No. > 35 mph is: $4.5 \times 20^{\circ}$ or $112.5 \times 0.8^{\circ}$ (or equivalent e.g. using fd) = $\underline{90}$ (cars)		
(b)	$\left[\overline{x}\right] = \frac{30 \times 12.5 + 240 \times 25 + 90 \times 32.5 + 30 \times 37.5 + 60 \times 42.5}{450} \left[=\frac{12975}{450}\right]$		
	$= 28.83 \text{ or } \frac{173}{6} \text{ awrt } \underline{28.8}$		
(c)	$[Q_2 =] 20 + \frac{195}{240} \times 10$ (o.e.) [Allow use of $(n + 1)$ giving 195.5 instead of 195]		
	= 28.125 [Use of (<i>n</i> +	1) gives 28.145] awrt <u>28.1</u>	A1 (2)
(d)	$Q_2 < \overline{x}$ So <u>positive skew</u>	[Condone $Q_2 \approx \overline{x}$] [so (almost) <u>symmetric</u>]	B1ft dB1ft (2)
(e)	[If chose <u>skew</u> in (d)] median (Q_2)	[If chose <u>symmetric</u> in (d)] mean (\overline{x})	B1
	Since the data is skewed or median not affected by extreme values	Since it uses all the data	dB1 (2)
	incutan not affected by extreme values	l	[13]
	Not	tes	L
(a)	1 st M1 for attempt to count squares (ac	ccept "22.5" in [22, 23] and "562.5" in [55	0, 575]) and
	use 450 to obtain a measure of	scale. [If using fd must use 450 to obtain s	cale factor]
	1 st A1 for a correct calc. for 20 or 0.8 or 1.25 etc		
	[May be fd = 4 to 1 large sq. or 0.8 to 1 small sq. May be on the diagram.] $2^{nd} dM1$ dep on $1^{st} M1$ for correctly counting squares for > 25 meth and forming quitable sure?		
	2^{nd} A1 for 90 with no incorrect working seen		
	e.g. $\frac{4.5}{22.5} \times 450$ scores M1A1M1 and A1 when = 90 is seen. Answer only is 4/4		
(b)	1 st M1 for clear, sensible use of mid-points at least 3 of (12.5, 25, 32.5, 37.5, 42.5) seen 2^{nd} M1 for an expression for \overline{x} (at least 3 correct terms on num' and a compatible		
	denominator)		
	Follow inrough their frequencies.	$\frac{1}{12975}$ (fraguencies) $\frac{648.75}{648.75}$ (large	(autoros)
	A 1 for swrt 28.8 (answer only is $3/3$)	1 squares), $\frac{1}{450}$ (frequencies), $\frac{1}{22.5}$ (farge	squares)
	A1 101 awit 28.8 (answer only is $3/3$))	
(c)	M1 for a full expression for median (using their frequencies). May see e.g. $25 + \frac{75}{120} \times 5$ etc		
	A1 Do nor accept boundaries of 19.5 for awrt 28.1 (answer only is 2/2)	or 20.5, these are M0A0) [For use of $(n + 1)$ accept 28.15 but not 2	8.2]
(L)	1 st B1ft for a correct statement about t	heir Q_2 and \overline{x} [Condone $Q_2 \approx \overline{x}$ only if $ q$	$2_2 - \overline{x} < 1$
(u)	Do not accept an argument ba	sed on the shape of the graph alone.	·
	2^{na} dB1ft dependent on 1^{st} B1 for a <u>comp</u>	<u>patible</u> description of skewness. F.t. their	values
Quartiles	If $Q_1 = 23.4$ and $Q_3 = 33.7 \sim 33.8$ are seen	n allow comparison of quartiles for 1 st B1	ın (d)
	$1^{\text{st}} \mathbf{B} 1$ for a correct choice based on their s	kewness comment in (d) If no choice made it	n(d) only O
(6)	2^{nd} dB1 for a suitable compatible comment		

Ques	stion	Scheme		
6.	(a)	$[z=]\pm \left(\frac{150-162}{2}\right)$	M1	
		[z=]-1.6	Al	
		[P(F > 150) = P(Z > -1.6) =] = 0.9452(0071) awrt <u>0.945</u>	AI (3)	
	(b)	$z = \pm 0.2533$ (or better seen)	B1	
		$(\pm)\frac{s-162}{7.5} = 0.2533(47)$	M1	
		s = 163.9 awrt <u>164</u>	A1 (3)	
		$z = \pm 1.2816$ (or better seen)	P 1	
	(0)	$162 - \mu$ 1 2015515	M1	
		$\frac{1}{9} = -1.2813515$	A1	
		$\mu = 173.533$ awrt <u>174</u>	AI (4)	
			[10]	
	(a)	Notes M1 for attempting to standardize with 150, 162 and 7.5. Account 1		
	(a)	M1 for attempting to standardise with 150, 162 and 7.5. Accept \pm Allow use of symmetry and therefore 174 instead of 150		
		1^{st} A1 for -1.6 seen. Allow 1.6 seen if 174 used or awrt 0.945 is seen. Sight of 0.945(2) is A1.		
		2 nd A1 for awrt 0.945 Do not apply ISW, if 0.9452 is followed by 1 – 0.9452 ther Correct answer only 3/3	award A0	
	()	\mathbf{D}_{1} for () $(\mathbf{D}_{2}) = 0.2522$ (or hotted) or \mathbf{D}_{2}		
	(D)	B1 For $(z =) \pm 0.2535$ (or better) seen. Giving $z = +0.25$ or $+0.253$ scores B0 here but may get M1A1		
		M1 for standardising with s (o.e.), 162 and 7.5, allow \pm , and setting equal to a z v	value	
		A1 for awrt 164 (Correct answer only scores B0M1A1)		
		$D_1 = f_{\text{end}}(x) + 1.2916(x + 1.4)$ All $x = 1.2926 D_1 = 1.2926 D_2 = 1.2926 $		
	(c)	B1 for $(z =) \pm 1.2816$ (or better) seen. Allow $awrt \pm 1.2811$ B0 scored in (b) for $z = M1$ for attempting to standardise with 162, 9 and μ , and setting equal to a z valu	= $awn + 0.25$ e where	
		1.26 < z < 1.31. Allow <u>+</u> here so signs don't have to be compatible.		
		1 A1 for a correct equation with compatible signs and $1.26 < z < 1.51$ 2^{nd} A1 for awrt 174 (Correct answer only scores B0M1A1A1). Dependent on 1 st	A1	
		162		
		An equation $\frac{102 - \mu}{9} = 1.2816$ leading to an answer of $\mu = 174$ is A0A0 <u>unless</u> then	e is clear	
		correct working such as: $\frac{162 - x}{9} = 1.2816 \Rightarrow x = \dots \therefore \mu = 162 + (162 - x) = 174$ then award A1A1		
		A common error is: $\frac{162 - \mu}{\mu} = 1.2816$ followed by $\mu = 162 + 9 \times 1.2816 = a \text{ wrt } 174$	It gets	
	NB	9 4040		

.		PhysicsAndMathsTutor.com		
Questi	on	Scheme	Marks	
7. ((a)	0.7 Split (0.021) Shape	B1	
		Poor Stitching Labels & 0.03	B1	
		0.03 (0.3) No split (0.009) Labels & 0.7,0.02	B1	
		\leq	(3)	
		(0.97) Split (0.0194)		
		0.02		
		No Poor Sutching		
		(0.98) No split(0.9506)		
((b)	P(Exactly one defect) = $0.03 \times 0.3 + 0.97 \times 0.02$ <u>or</u> P(PS \cup Split) - 2P(PS \cap Split) = $[0.009 + 0.0194 =]$ <u>0.0284</u>	M1A1ft A1 cao (3)	
	(c)	$P(N_0 \text{ defects}) = (1 - 0.03) \times (1 - 0.02) \times (1 - 0.05)$ (or better)	M1	
		= 0.90307 awrt 0.903	A1 cao (2)	
			111 cuo (2)	
((d)	P(Exactly one defect) = $(b) \times (1 - 0.05) + (1 - 0.03) \times (1 - 0.02) \times 0.05$	M1 M1	
		$=$ "0.0284" \times 0.95 + 0.97 \times 0.98 \times 0.05	A1ft	
		$= [0.02698 + 0.04753] = 0.07451 \qquad \text{awrt } \underline{0.0745}$	A1 cao (4)	
		Notos	[12]	
		Allow MR of 0.2 for 0.02 or 0.3 for 0.03 on tree diagram to score all M and A1ft marks only		
((a) $1^{st}B1$ for 2 branch then 4 branch shape			
		2^{rd} dB1 dep. on 1 st B1 for labels showing stitching (accept letters) and 0.03 value co	prrectly placed	
		[probabilities shown in brackets are not required and any such values given can be i	gnored in (a)]	
((b)	M1 for $0.03 \times p + 0.02 \times q$ where p and q follow from their tree diagram. Extr	a terms is M0	
		1^{st} A1ft for a fully correct expression. Accept 1–0.7 for 0.3 and 1–0.03 for 0.97		
м	ſR	Follow through 0.2 and 0.3 MR only 0.2 for 0.02 \rightarrow 0.203 or 0.3 for 0.03 \rightarrow 0.104 or both \rightarrow 0.23 should score M1A1	AO	
		2^{nd} A1 cao for 0.0284 only (or exact equivalent such as $\frac{71}{2500}$)	110	
		Do not allow 0.5 as MR of 0.05 so no M or A marks in (c) or (d)		
((c)	M1 for (their 0.97)×(their 0.98)×(1-0.05) (or better) f.t. values from their the	ree diagram	
		AI cao for awrt 0.903		
((d)	1 st M1 for one correct triple (or correct ft from their tree) of:		
		$[0.03 \times 0.3 \times (1-0.05)] + [0.97 \times 0.02 \times (1-0.05)] + [0.97 \times 0.98 \times 0.05]$		
		2^{nd} M1 for two correct triples or correct ft from their tree and adding <u>or</u> their (b) x	$\times (1 - 0.05)$	
		1 st A1ft for a fully correct expression or f.t. their (b) and 0.2 or 0.3 MR only	. ,	
Μ	IR	0.2 for $0.02 \rightarrow 0.23165$ or 0.3 for $0.03 \rightarrow 0.1331$ or both $\rightarrow 0.2465$ (or awrt 3sf) score 2^{nd} A1 cao for awrt 0.0745	es M1M1A1A0	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA033137 Summer 2012

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE $\,$

Mark Scheme (Results)

January 2013

GCE Maths – Statistics S1 (6683/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u> for our BTEC qualifications.

Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

If you have any subject specific questions about this specification that require the help of a subject specialist, you can speak directly to the subject team at Pearson. Their contact details can be found on this link: <u>www.edexcel.com/teachingservices</u>.

You can also use our online Ask the Expert service at <u>www.edexcel.com/ask</u>. You will need an Edexcel username and password to access this service.

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2013 Publications Code UA034849 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Unless indicated in the mark scheme a correct answer with no working should gain full marks for that part of the question.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes and can be used.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{1}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but incorrect answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. The maximum mark allocation for each question/part question(item) is set out in the marking grid and you should allocate a score of '0' or '1' for each mark, or "trait", as shown:

	0	1
aM		•
aA	۲	
bM1		٠
bA1	•	
bB	۲	
bM2		•
bA2		•

January 2013 6683 Statistics S1 Mark Scheme

Question Number	Scheme	Marks	
1. (a)	$(S_{tt}) = 8702 - \frac{258^2}{10}$ or $(S_{gt}) = 1550.2 - \frac{258 \times 63.6}{10}$ $(S_{tt}) = 2045.6$, $(S_{gt}) = -90.68$ awrt (2046), awrt - 90.7	M1 A1, A1	
(b)	$r = \frac{-90.68}{\sqrt{2045.6 \times 7.864}} = -0.714956$ awrt -0.715	(3) M1 A1 (2)	
(c)	Positive e.g. high v corresponds to low t and low t corresponds to high g so expect high v to corresponds to high g <u>or</u> expect more revision to result in a better grade	B1 B1 (2) 7	
	Notes		
(a)	M1 for at least one correct expression 1^{st}A1 for $S_{tt} = \text{awrt } 2046$ (Condone $S_{xx} = \dots$ or even $S_{yy} = \dots$) 2^{nd}A1 for $S_{gt} = \text{awrt } -90.7$ (Condone $S_{xy} = \dots$)		
(b)	M1 for attempt at correct formula. Must have their S_{tt} , S_{gt} and given S_{gg} in the correct places. Condone miss: Award M1A0 for awrt -0.71 with no expression seen M0 for $\frac{1550.2}{\sqrt{8702 \times 7.864}}$ Correct answer only is 2/2	ing "—"	
(c)	 1st B1 for saying "positive". Ignore mention of skew. 2nd B1 for suitable reason that mentions at least v and g and supports positive correle.g. "the less <u>revision</u> done the lower the <u>grade</u>" is B1 "should do better with more <u>revision</u>" is B0 since does not mention <u>grades</u> "both coefficients are similar" or two sketches of negative correlation with labelled v, t and g are implied Allow use of letters v and g Allow equivalent terms e.g. "study" instead of "revision" or "score" instead of 	ation. axes is B1 since "grade"	

Question Number	Scheme	Marks	
2.			
(a)	F(3) = 1 gives $\frac{3^3 + k}{40} = 1$	M1	
	So $k = \underline{13}$	A1cso (2)	
(b)	$P(X = 1) = \frac{14}{40}$ or 0.35 (o.e.)	B1	
	Use of $P(X = 2) = F(2) - F(1)$ or $P(X = 3) = F(3) - F(2)$	M1	
	$P(X=2) = \frac{7}{40}$ or 0.175, $P(X=3) = \frac{19}{40}$ or 0.475	A1, A1	
	.2	(4)	
(c)	$\operatorname{Var}(4X - 5) = 4^2 \operatorname{Var}(X)$	MI	
	So $Var(4X-5) = \frac{259}{20}$ or 12.95	A1 (2)	
	Nictor	8	
(a)	M1 for use of F(3) = 1 Attempt at $\frac{3^{2}+k}{40} = 1$ must be seen		
	40 27+k = 40 without reference to F(3) = 1 is M0		
	$2/+\kappa = 40$ without reference to $F(3) = 1$ is M0 A1cso for no incorrect working seen and M1 scored.		
<u>Verify</u>	Allow M1 for $\frac{3^3 + 13}{3} = 1$ but the A1 requires an explicit comment such as "so $k = 13$ "		
	40		
	If a table such as this is seen then award B1M1A1A1. Ignore labels on 2 nd row		
(h)			
(0)	$\frac{7}{20}$ or 0.35 $\frac{7}{40}$ or 0.175 $\frac{19}{40}$ or 0.475		
	Otherwise apply the following:		
		/ X •	
	B1 for $\frac{17}{40}$ or 0.35 or any exact equivalent. Can be labelled F(1), P(X = 1) or p(x) and		
	associated with $x = 1$ or given in a table but must have <u>a</u> label.		
	M1 for clear method showing how to obtain $P(X =)$ from $F(x)$ M1 can be implied if either $P(X = 2)$ or $P(X = 3)$ is correct		
	$1^{\text{st}} \wedge 1$ for $P(Y-2) = \frac{7}{2}$ or 0.175 or exact equivalent		
	$\frac{1}{40}$		
	2^{nd} A1 for P(X = 3) = $\frac{19}{40}$ or 0.475 or exact equivalent		
	40		
	M1 for correct use of the verience formula $(A^2 \operatorname{Ver}(Y) \text{ slone secures M1})$		
(C)	A value for $Var(X)$ is not required for this M1		
	A1 for any exact equivalent to 12.95 Correct answer only is 2/2		

Question Number	Scheme	Marks	
3. (a)	$\sum t = 140$ (or $\bar{t} = 17.5$) and $\sum m = 32$ (or $\bar{m} = 4$)	B1 B1	
	$(S_{tm}) = 469.5 - \frac{"140" \times "32"}{8}$	M1	
	$(S_{tm} =) -90.5$	A1cso (4)	
(b)	$b = \frac{S_{tm}}{S_{tt}} = \frac{-90.5}{354}$	(4) M1	
	$b = -0.255649$ (allow $\frac{181}{708}$) -0.25 or awrt -0.26	A1	
	$a = \frac{"32"}{8} - b \times \frac{"140"}{8}$	M1	
	So equation of the line is $\underline{m = 8.47 - 0.256t}$ (allow $m = \frac{11999}{1416} - \frac{181}{708}t$)	A1 (4)	
		(4)	
(c)	$(8.47 - 0.256 \times 10 =)5.9$ awrt <u>5.9</u>	B1 (1)	
(d)	Should be reliable since 10 is in the range (of the data)	B1 (1) 10	
	Notes		
(a)	1^{st} B1for 140 seen in correct context or correctly labelled 2^{nd} B1for 32 seen in correct context or correctly labelled. (allow a fully correct expression – not "++")4480 used correctly is B1B1M1for attempting a correct expression. Follow through their 140 and their 32 You may see attempt at $\sum (t-\overline{t})(m-\overline{m})$. This must have all the products seen.		
	A1cso requires a correct expression seen and no incorrect working leading to -90	.5	
(b)	1^{st} M1for a correct expression for b. Follow through their S_{tm} . Condone missing "-" 1^{st} A1for awrt -0.26 or condone -0.25 2^{nd} M1for a correct method for a. Follow through their sums from part (a) and their value of b 2^{nd} A1for a correct equation for m and t with $a = awrt 8.47$ and $b = awrt -0.256$ Must be an equation in m and t, use of x or y scores A0 here.		
(c)	B1 for awrt 5.9 Accept 6 if the correct expression (awrt $8.47 - 10 \times awrt 0.256$) is seen		
(d)	B1 for suggesting it is reliable and mentioning 10 within the range (of the data.) or suggesting it is reliable since interpolating or not extrapolating		
	 NB "it is reliable since <u>it</u> is in the range" is B0 since "<u>it</u>" is not explicit enough Condone extra non-relevant comments but penalise contradictory comments. e.g. "near the extreme so <u>not reliable</u> but not extrapolated so reliable" is B0 since <u>contradicts</u> "reliable since 10 is within the range (of temps) <u>and 5.9 within range of times</u>" is B1 since <u>irrelevant</u> 		

Question Number	Scheme	Marks	
4. (a)	$\frac{127 - 100}{15}$ So P(L > 127) = P(Z > 1.8) or 1-P(Z < 1.8) o.e. = 1 - 0.9641 = <u>0.0359</u> (awrt <u>0.0359</u>)	M1 A1 A1 (3)	
(b)	$\frac{d-100}{15} = -1.2816 \text{(Calculator gives } -1.2815515)}d = 80.776 \text{(awrt } \underline{80.8}\text{)}$	M1, B1 A1	
(c)	Require $P(L > 133 L > 127)$ = $\left[\frac{P(L > 133)}{P(L > 127)}\right] = \frac{P(Z > 2.2)}{P(L > 127)}$	(3) M1 dM1	
	$= \left\lfloor \frac{1 - 0.9861}{1 - 0.9641} \right\rfloor = \frac{0.0139}{[0.0359]}$ $= 0.3871 = awrt 0.39$	A1 A1	
S.C.	An attempt at P($L < 133 L > 127$) that leads to awrt 0.61 (M0M1A0A0)	(4) 10	
	Notes		
(a) (b) Calc	M1 for attempting to standardise with 127, 100 and 15. Allow \pm 1 st A1 for Z > 1.8. Allow a diagram but must have 1.8 and correct area indicated. Must have the Z so P(L > 127) with or without a diagram is insufficient. May be implied by 0.0359 2 nd A1 for awrt 0.0359 (calc. gives 0.035930266). Correct ans only 3/3. M1A0A1 not poss. M1 for an attempt to standardise with 100 and 15 and set = \pm any z value ($ z > 1$) B1 for $z = \pm 1.2816$ (or better) seen anywhere [May be implied by 80.776(72) or better seen] A1 for awrt 80.8 (can be scored for using 1.28 but then they get M1B0A1) The 80.8 must follow from correct working. If answer is awrt 80.8 and awrt 80.777 or 80.776 or better seen then award M1B1A1 If answer is awrt 80.8 or 80.77 then award M1B0A1 (unless of course $z = 1.2816$ is seen)		
(c) ALT	1 st M1 for clear indication of correct conditional probability or attempt at correct ratio So clear attempt at $\frac{P(L > 133)}{P(L > 127)}$ is sufficient for the 1 st M1 2 nd dM1 dependent on 1 st M1 for P(L > 133) leading to P(Z > 2.2). 1 st A1 for 0.0139 or better seen coming from P(Z > 2.20). Dependent on both Ms 2 nd A1 for awrt 0.39. Both Ms required If they assume Alice did not check that the phone was working you may see: [P(L< 127).0] + P(L > 127). <u>P(L > 133 L > 127)</u> Provided the <u>conditional probability</u> is seen as part of this calculation the 1 st M1 can be scored and their final answer will be 0.0139(4/4) An answer of 0.0139 without sight of the conditional probability is 0/4.		

B1		
M1		
A1		
(3)		
M1		
A1		
(2)		
M1A1		
M1A1		
(4)		
BI		
B1ft		
(2)		
M1		
A1		
(2) $B2/1/0$		
(2)		
15		
9		
rect interval]		
.8 or [278, 278.5)		
000 (to 1 sf) &/100		
v^2 correct but		
measure given		
implied by (0.53)		
A1 for answer in range $[0.40, 0.41]$ (tables gives 0.4038, calculator 0.40619) Ans only 2/2		
part (d)		
One comment should suggest it is <u>not</u> good since <u>skew</u> . The other it <u>is</u> since matches <u>range in (e)</u>		

Question Number	Scheme	Marks	
6. (a)	b135P(B = b) $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ P(B = b) $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$	B1 B1	
(b)	Discrete Uniform {distribution}	(2) B1	
(c)	[E(B) =] 3 (by symmetry)	B1 (1)	
(d)	$[E(R) =] 2 \times \frac{2}{3} + 4 \times \frac{1}{6} + 6 \times \frac{1}{6} = 3$	M1 A1	
(e)	$[E(R^{2}) =] 2^{2} \times \frac{2}{3} + 4^{2} \times \frac{1}{6} + 6^{2} \times \frac{1}{6} \qquad \left[= \frac{34}{3} \right]$	(2) M1	
	$[Var(R) =]\frac{34}{3} - 3^2 = ,\frac{7}{3}$ (or any exact equivalent. NB 2.33 is A0)	dM1, A1	
(f)	Coin lands on 2, choose blue die; coin lands on 5 choose red die	(3) B2/1/0	
	P(Avisha wins) = $\frac{1}{2} \times \left(\frac{1}{3} + \frac{1}{3}\right) + \frac{1}{2} \times \frac{1}{6}$	M1	
	$=\frac{5}{12} (\text{allow awrt } 0.417)$	A1 (4)	
	Notes	13	
(a)	1^{st} B1 for correctly identifying values of <i>b</i> as 1, 3, 5 or 1,1,3,3,5,5	I	
	2 nd B1 for probabilities all $=\frac{1}{3}$ or exact equivalent (or of course 6 cases of $\frac{1}{6}$)		
(b)	Any correct probability distribution or probability function is 2/2. Must be in part (B1 for "Discrete Uniform" . Both words required.	a)	
(c)	B1 for answer of 3 o.e. Accept $E(X) = 3$		
(d)	M1 for an attempt at correct formula. At least 2 correct products seen. If later divide by $n(\neq 1)$ M0 A1 for an answer of 3. Correct answer only scores both marks.		
(e)	1 st M1 for a correct attempt at $E(R^2)$. At least 2 correct products seen. Condone $Var(R) = etc$ May be implied by sight of $\frac{34}{2}$ or 11.3 or better		
	2^{nd} dM1 Dep. on 1 st M1 for clear attempt at $E(R^2) - [E(R)]^2$ Must see their values used.		
	NB Var(R) = E(R ²) - [E(R)] ² = " $\frac{34}{3}$ " - "3" is M1M0A0 since do not <u>use</u> their	$\left[\mathrm{E}(R)\right]^2$	
(f)	 B2/1/0 Both correct B1B1, one correct B1B0. Do not use B0B1[e.g. always red or RR is B1B0] NB Allow other descriptions of the die e.g. 1st or fair for blue, 2nd for red if they are clear. M1 for evaluating correct probabilities i.e. only 1/2, 1/2 seen or if incorrect choice made: 		
	M1 for an answer of : if choose RR $(\frac{1}{4})$, if choose BB $(\frac{1}{3})$, if choose RB $(\frac{1}{6})$		
	NB $\frac{5}{12}$ as answer scores M1A1. Need to see choices of die stated for B marks.		

Question Number	Scheme	Marks	
7. (a)	$P(A \cup B) = 0.35 + 0.45 - 0.13 = \underbrace{\text{or}}_{= 0.67} 0.22 + 0.13 + 0.32$	M1 A1 (2)	
(b)	$P(A' B') = \frac{P(A' \cap B')}{P(B')} \text{ or } \frac{0.33}{0.55}$	M1	
	$=\frac{3}{5}$ or 0.6	A1	
(c)	$P(B \cap C) = 0.45 \times 0.2$ $= \underline{0.09}$	(2) M1 A1	
(d)	A Blow 1 st B1 for 3 intersecting circles in a box with zeros in the regions for $A \cap C$ Do not accept "blank" for zero	(2) B1 B1ft B1 B1	
(e)	$P(B \cup C)' = 0.22 + 0.22$ or $1 - [0.56]$ or $1 - [0.13 + 0.23 + 0.09 + 0.11]$ o.e. = 0.44	(4) M1 A1 (2) 12	
	Notes		
(a)	 NB May see Venn diagram for A and B only used for (a) and (b) but M marks are awarded for correct expressions only. No ft from an incorrect diagram for M marks. M1 for attempt to use the addition rule. Correct substitution i.e. correct expression seen A1 for 0.67 only. Correct answer only scores 2/2 		
(b)	M1 for a correct ratio of probabilities or a correct formula and at least one correct prob For a correct formula allow "1 – their (a)" instead of 0.33 but not for correct ratio case. Do not award for assuming independence i.e. $\frac{P(A' \cap B')}{P(B')} = \frac{0.65 \times 0.55}{0.55}$ is M0. M0 if num>denom A1 for 3/5 or any exact equivalent.		
(c)	M1 for correct expression. Need correct values for $P(B)$ and $P(C)$ seen. A1 for 0.09 or any exact equivalent. Correct answer only is $2/2$		
(d)	No labels A, B, C in (d) loses 1^{st} B1 but can score the other 3 by implicationB1for box with B intersecting A and C but C not intersecting A. No box is B0B1ftfor 0.13 and their 0.09 in correct places. [ft $P(B \cap C)$ from (c)]B1for any 2 of 0.22, 0.22, 0.11 and 0.23 correctB1for all 4 values correct		
(e)	M1 for a correct expression or follow through from their Venn diagram NB $P(B') \times P(C') = 0.55 \times 0.8$ is OK. Do not ft "blank" for zero and M0 for negative probs. A1 for 0.44 only. Correct answer only is 2/2		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA034849 January 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Statistics 1 (6683/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA036996 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- ***** The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme

Question	Scheme	Marks
1. (a)	$b = \frac{18.35}{312.1} [= 0.058795]$	M1
	$a = 5.8 - "0.058795" \times 4.8$	M1
	a = awrt 5.52	A1
	So $y = 5.52 + 0.0588x$	A1 (4)
(b)	$\frac{e}{10} = "5.52" + "0.0588" \times \left(\frac{g-60}{4}\right)$	M1
	4e = 220.71 + 0.588(g - 60)	dM1
	e = 46 + 0.15g	AIAI (4)
(c)	$e = "46" + "0.15" \times 100$	M1
	= <u>61</u>	A1 (2)
		[10]
	Notes	
(a)	1 ^{ar} M1 for a correct expression for b 2 nd M1 for a correct expression for a ft their value of b	
	1^{st} A1 for $a = \text{awrt} 5.52$	
	2^{nd} A1 for a correct equation in y and x with a and b correct to awrt 3 sf	
(b)	1 M1 for substitutions into their equation to get an equation in e and g. Nood $y = \frac{e}{2}$ and $x = \frac{e^{-60}}{2}$	
	Need $y = \frac{1}{10}$ and $x = \frac{4}{4}$	low one din
	1^{st} A1 for an equation $e = awrt 46 + b$	now one snp
	$2^{nd} A1$ for an equation $e^{-1} = 4 \text{ wrt} + 6 \frac{1}{2} \dots$	
ALT	1 st M1 for use of $d = \frac{10 \times \text{"their } b^{"}}{4}$ or sight of 0.15 used as gradient	
	$2^{nd} dM1$ Dep. on $1^{st} M1$ for use of $\overline{e} = 10 \times$ "their \overline{y} " or sight of 58 and use of $\overline{g} = 4 \times$ " the	eir \overline{x} "+ 60
	or sight of 79.2 and use of these values to find c in $c = \overline{e} - d\overline{g}$	
(c)	M1 for substituting $g = 100$ into their new equation (or $x = 10$ and then attempting to \times at A1 for awrt 61	ns.by 10)

Question					Scheme))	N	Iarks
2. (a)	x		1	2	3			
	P(X =	= x)	<u>0.4</u>	0.25	0.35			
	P(X = 2)	2) = F	F(2) - F(1) ((o.e.)			M1	
						P(X = 2) = 0.25	A1	
						P(X = 3) = 0.35	A1	(3)
(b)	[F(1.8)	$= \mathbf{P}(\mathbf{Z})$	$X \le 1.8) = F$	$\mathbf{P}(X \le 1) = \mathbf{]}$	<u>0.4</u>		B 1	(1)
								[4]
					Notes			
(a)	M1 for $P(X = 1) = 0.4$ and evidence of a correct method for finding $P(X = 2)$ or $P(X = 3)$.							
		Imp	lied by corr	ect ans.				
	$1^{st}A1$	for F	P(X=2)=0	0.25				
	$2^{nd} A1$	for F	$\mathbf{P}(X=3)=0$.35				
(b)	B1	for 0).4					

Question	Scheme	Marks
3. (a)	Width = $2 \times 1.5 = 3$ (cm)	B1
	Area = $8 \times 1.5 = 12$ cm ² Frequency = 24 so 1 cm ² = 2 plants (o.e.)	M1
	Frequency of 12 corresponds to area of 6 so height = 2 (cm)	A1 (3)
(b)	$[Q_2 =] (5+) \frac{19}{24} \times 5$ or (use of $(n+1)$) $(5+) \frac{19.5}{24} \times 5$ = 8.9583 <u>awrt 8.96</u> or 9.0625 awrt 9.06	M1 A1 (2)
(c)	$[\overline{x} =] \frac{755}{70} \text{ or } \frac{\mathbf{awrt 10.8}}{\sqrt{12027.5}}$	B1
	$[\sigma_x =] \sqrt{\frac{12037.5}{70} - \overline{x}^2} = \sqrt{55.6326}$	M1A1ft
	$= \underline{\mathbf{awrt} \ 7.46} (\text{Accept } s = \text{awrt} \ 7.51)$	A1 (4)
(d)	$\overline{x} > O_{2}$	B1ft
	So <u>positive skew</u>	dB1 (2)
(e)	$\overline{x} + \sigma \approx 18.3$ so number of plants is e.g. $\frac{(25 - "18.3")}{10} \times 12 (+4)$ (o.e.)	M1
	10 = 12.04 so 12 plants	A1 (2)
		[13]
	Notes	
(a)	M1 for forming a relationship between area and no. of plants or their width×their he A1 for height of 2 (cm). Make sure the 2 refers to height and not plants!	hight = 6
(b)	M1 for a suitable fraction ×5 (ignore end points) A1 for awrt 8.96 (or $\frac{215}{24}$ or $8\frac{23}{24}$) or 9.06 (or $\frac{145}{16}$ or $9\frac{1}{16}$) if using $(n + 1)$	
(c)	B1 for a correct mean. Accept exact fraction or awrt 10.8 M1 for a correct expression for σ or σ^2 . Condone mixed up labelling- ft their me A1ft for a correct expression – ft their mean but must have square root A1 for awrt 7.46 (use of <i>s</i> = awrt 7.51). Condone correct working and answer call	an led variance.
(d)	1 st B1ft for a correct comparison of their \overline{x} and their O_{2}	
ALT	Allow use of a formula for skewness that involves $(\overline{x} - O_2)$ or use of quartiles but must have	correct values
	NB $Q_1 = 5.31$, $Q_3 = 14.46$ (awrt 14.5), $Q_3 - Q_2 \approx 5.5$, $Q_2 - Q_1 \approx 3.7/6$ 2^{nd} dB1 Dependent on a suitable reason for concluding "positive skew". "correlation	on" is B0
(e)	 M1 for a suitable expression involving some interpolation (condone missing 4 so as Condone use of end points of 25.5 and 14.5 in their interpolation expressions. A1 for 12 (condone awrt 12). Answer only 2/2 	ccept awrt 8)

Ones	stion	Scheme	Marks
		[- (145 - 150)] = (- 145 - 150)	
4.	(a)	$\left\lfloor P(M < 145) = \right\rfloor P\left(Z < \frac{10}{10}\right)$	M1
		= P(Z < -0.5) or P(Z > 0.5)	A1
		= awrt 0.309	A1 (3)
	(b)	$[P(B > 115) = 0.15 \Rightarrow] \frac{115 - 100}{100} = 1.0364$	MIBIAI
	(0)	$d \qquad (Calc gives 1.036433)$	MIDIAI
		$\underline{d = 14.5}$ (Calc gives 14.4727)	A1 (4)
		$D(Y > \dots + 15)$	
	(c)	$[P(X > \mu + 15 X > \mu - 15) =] = \frac{P(X > \mu + 15)}{P(X - 15)}$	M1
		$P(X > \mu - 15)$	
		$=\frac{0.35}{1000}$	A1
		1-0.35	
		$=\frac{7}{12}$ or <u>awrt 0.538</u>	A1 (3)
		15	[10]
		Notes	
		Condone poor use of notation if a correct line appears later.	
	(a)	M1 for standardising with 145, 150 and 10. Allow \pm and use of symmetry so 155 in	stead of 145
		1 st A1 for $P(Z < -0.5)$ or $P(Z > 0.5)$ i.e. a z value of ± 0.5 and a correct region indi	cated
		2 AT 101 awrt 0.509 Allswer ollig is 5/5	
		115-100 I I I I I I I I I I I I I I I I I I	
	(b)	M1 for $\pm \frac{d}{d} = z$ where $ z > 1$ Condone MR of $\mu = 150$ instead of 100 for	r MIBIONly
		B1 for a standardised expression = ± 1.0364 (do not allow for use of 1 – 1.0364)	
		1 st A1 for $z = awrt 1.04$ and compatible signs i.e. a correct equation with $z = awrt 1.02$)4
	Calc	2 A1 for awrt 14.5 (allow awrt 14.4 fl $z = awrt 1.04$ is seen) Answer only of awrt 14.473 scores M1B1A1A1	
	Cuic	Answer only of awrt 14.48 scores M1B0A1A1	
	(c)	M1 for a correct ratio expression need $P(X > \mu + 15)$ on numerator. Allow use of a	a value for μ
		May be implied by next line. $0.35 \times 0.65 = 0.2275$	
		NB $\frac{0.55 \times 0.05}{0.65} = \frac{0.2275}{0.65}$ is M0	
		1 st A1 for a correct ratio of probabilities	
		2^{nd} A1 for awrt 0.538 or $\frac{7}{13}$ (o.e.). Allow 0.5385 provided 2^{nd} A1 is scored.	

Question	Scheme	Mark	ζS
5. (a)	$S_{yy} = 393 - \frac{61^2}{10} = 20.9$	M1A1	
	$S_{xy} = 382 - \frac{61 \times 60}{10} = \underline{16}$	A1	(3)
(b)	$[r=]\frac{"16"}{\sqrt{"20.9"\times 28}}$	M1	
	= 0.66140 <u>awrt 0.661</u>	A1	(2)
(c)	Researcher's belief suggests <u>negative</u> correlation, data suggests <u>positive</u> correlation So data does <u>not</u> support researcher's belief	B1 dB1	(2)
(d)	New <i>x</i> equals $\overline{x} = 6$	B1	
	Since $S_{xx} = \sum (x - \overline{x})^2$ the value of S_{xx} is the same = 28	dB1	(2)
(e)	$S_{xy} = \sum_{xy} (x - \overline{x})(y - \overline{y}) = \sum_{xy} (x - \overline{x})y \text{ so the new term will be zero (since mean = x)}$	B1	
	and since S_{yy} increases	dB1	(2)
		[11]	(2)
(a)	Notes		
(a)	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
(b)	M1 for a correct expression for $r - ft$ their 20.9 (provided it is > 0) and their 16. Use of 382 for 16 or 393 for 20.9 is M0		
(c)	 1st B1 for a suitable reason <u>contrasting</u> belief with data. They must state the sign (provide negative) of the correlation of data or the belief and imply the other is opposized. 2nd dB1 Dependent on a correct reason for saying it does <u>not</u> support the claim e.g. State "does not support the belief because data has positive correlation" scores State "does support the belief because data has positive correlation" scores B01 	ositive or site s B1B1 E B0	BUT
(d)	1 st B1 for clearly stating that new value of $x = (6 =)$ mean 2 nd dB1 Dep on 1 st B1 for a reason that shows S _m is unchanged e.g. extra term is 0 so S _m is	the same	
ALT	1^{st} B1 for seeing $\sum x = 66$ and new $\sum x^2 = 424$ (or $388 + 6^2$) and attempt at S_{xx}	the same	
	2^{nd} B1 for showing $S_{xx} = 28$ with $n = 11$ and no incorrect working seen and a final c	omment	
(e)	1 st B1 for a clear reason that mentions S_{xy} is the same <u>and</u> the increase in S_{yy} Saying that <i>r</i> increases or stays the same is B0B0 2 nd dB1 Dependent on 1 st B1 for saying <i>r</i> will decrease.		

Questi	on	Scheme	Marks
6. ((a)	$[P(B) = 0.4, P(A) = p + 0.1 \text{ so}] 0.4 \times (p + 0.1) = 0.1 \text{ or } 0.4 \times P(A) = 0.1$	M1
		$p = \frac{1}{4} - 0.1$ <u>$p = 0.15$</u>	M1A1 (3)
((b)	$\frac{5}{11} = \left[\frac{P(B \cap C)}{P(C)} = \right] \frac{0.2}{0.2 + q} \text{or} \frac{5}{11} = \frac{0.2}{P(C)}$	M1
		$11 \times 0.2 = 5 \times (0.2 + q)$	dM1
		r = 0.6 - (p + q) i.e. $r = 0.21$ $q = 0.24$	A1 A1ft (4)
	(c)	$\left[\frac{P((A\cup C)\cap B)}{P(B)}\right] = \frac{0.3}{0.4}$	M1
		= <u>0.75</u>	A1 (2) [9]
		Notes	
((a)	1^{st} M1 for using independence in an attempt to form an equation in p or P(A)	
		2^{Int} M1 for a correct attempt to solve their linear equation leading to $p = \dots$	
		A1 Ior 0.15 or exact equivalent	
((b)	1 st M1 for a clear attempt to use $P(B/C)$ to form an equation for q or $P(C)$. Assumi 2 nd dM1 Dep. on 1 st M1 for correctly simplifying to a linear equation in q or $P(C)$ e.g. accept $11 \times 0.2 = 5 \times 0.2 + q$ or $5P(C) = 2.2$	ng indep M0
		1^{st}A1 for $q = 0.24$ or exact equivalent	
		2^{10} Alft for 0.6 – their $(p+q)$ Dependent on 1^{51} M1 in (b) only.	
	(c)	M1 for a correct ratio expression and one correct value (num < denom) <u>or</u> a fully c Allow $\frac{P(A \cup C \cap B)}{P(B)}$ with one probability correct but only if num < denom.	orrect ratio.
		A numerator of $P(A \cup C) \times P(B)$ scores M0	
		A1 for 0.75 or an exact equivalent	

Question	Scheme	Marks
7. (a)	$E(S) = 0 + 1 \times 0.2 + 2 \times 0.1 + 4 \times 0.3 + 5 \times 0.2 = [0.2 + 0.2 + 1.2 + 1.0]$	M1
	<u>2.6</u>	A1 (2)
(b)	$E(S^2) = 0 + 1 \times 0.2 + 2^2 \times 0.1 + 4^2 \times 0.3 + 5^2 \times 0.2$ or $0.2 + 0.4 + 4.8 + 5$	M1
	10.4 (*)	A1cso (2)
(c)	$Var(S) = 10.4 - ("2.6")^2$	M1
	<u>3.64</u> or $\frac{91}{25}$ (o.e.)	A1 (2)
(d)(i)	$5E(S) - 3 = 5 \times "2.6" - 3$. = 10	M1. A1
(ii)	$5^2 \operatorname{Var}(S) = 25 \times 3.64, = 91$	M1, A1 (4)
(e)	$5S-3 > S+3 \implies 4S > 6$ or $S > 1.5$, so need $P(S \ge 2)$	M1, A1
	$P(3 \ge 2) = \underline{0.0}$	AI (3)
(f)	$P(S_1 = 1) \times P(S_2 \le 4), = 0.2 \times 0.8 = 0.16$ (*)	M1,A1cso(2)
(g)	$P(S_1 = 2) \times P(S_2 \le 2) = 0.1 \times 0.5 = 0.05$	1.61
	$P(S_1 = 4) \times P(S_2 \le 1) = 0.3 \times 0.4$ = 0.12 Full method – all cases listed	MI
	$P(S_1 = 5) \times P(S_2 = 0) = 0.2 \times 0.2$ = 0.04 all correct products	A1
	$P(S_1 = 0) \times P(S_2 = any value) = 0.2 \times 1 = 0.20$	
	= <u>0.57</u>	A1 (3)
	Notes	[18]
(a)	M1 for an attempt at $\sum xP(X = x)$, at least 2 non-zero terms seen. Correct answ	ver 2/2
	A1 for 2.6 or any exact equivalent	
(b)	M1 for a correct attempt, at least 3 non-zero terms seen	
	Arcso for 10.4 provided wit is scored and no incorrect working seen	
(c)	M1 for $10.4 - \mu^2$, ft their μ . Must see their value of μ squared (A1 for 3.64 or any exact	t equiv.)
(d)(i)	M1 for a correct expression using their 2.6. (A1 for 10)	
(u)(l) (ii)	M1 for $25 \times Var(S)$ - ft their Var(S) (A1 for 91)	
(e)	In for solving the inequality as far as $ps > q$ where one of p or q are correct $1^{st} A 1$ for $P(S > 2)$	
	2^{nd} A1 for 0.6 (provided $S > 1.5$ was obtained). Ans only of 0.6 scores 3/3	
	A table sharring all 25 agons and only soons M1 in (a) if the sourcest agons and in di	and a d
(f)	A table snowing all 25 cases can only score M1 in (g) if the correct cases are indi- M1 for using independence (so multiplying) and attempting $P(S_2 < 4)$	cated.
(1)	e.g. $0.2 \times (0.2 + 0.2 + 0.1 + 0.3)$ or $0.04 + 0.04 + 0.02 + 0.06$ score M1 BUT $\frac{4}{28}$ (not from $0.2 \times 0.2 \times 0.2 + 0.2 + 0.1 + 0.3)$	0.8) is M0A0
	A1cso for a fully correct explanation leading to 0.16. Must come from 0.2×0.8 not	$\frac{4}{25}$
		23
(g)	M1 for all cases for S_1 or all 15 cases for X	
	1° A1 for all correct probability products for S_1 or X 2 nd A1 for 0.57 Correct answer scores 3/3 Probabilities out of 25 score A0A0	
	2 AT 101 0.37 Confect answer scores 5/3. Flobabilities out of 23 score AUAU	

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA036996 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Mark Scheme (Results)

Summer 2013

GCE Statistics 1 (6683/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at <u>www.edexcel.com</u>.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2013 Publications Code UA036993 All the material in this publication is copyright © Pearson Education Ltd 2013

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes:

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.
- 8. In some instances, the mark distributions (e.g. M1, B1 and A1) printed on the candidate's response may differ from the final mark scheme.

1. (a) $(S_{ih}) = 64980 - \frac{7150 \times 110}{9} = -22408.9$ $(S_{hh}) = 7171500 - \frac{7150^2}{9} = 1491222.2$ (b) $r = \frac{-22408.9}{\sqrt{1491222 \times 371.56}} = -0.95200068$ $r = \frac{-22408.9}{\sqrt{1491222 \times 371.56}} = -0.95200068$ (c) Yes as r is close to -1 (if -1 < r < -0.5) or Yes as r is close to 1 (if 1> r > 0.5) [If $-0.5 \le r \le 0.5$ allow "no since r is close to 0"] [If $ r > 1$ award B0] (d) $b = \frac{-22408.9}{1491222 2} = -0.015027$ (allow $\frac{-56}{3725}$) awrt -0.015 M	11 A1 .1 (3) [1A1 (2) 1ft			
$ (S_{hh}) = 7171500 - \frac{7150^2}{9} = 1491222.2 $ $ (S_{hh}) = 7171500 - \frac{7150^2}{9} = 1491222.2 $ $ (b) \qquad r = \frac{-22408.9}{\sqrt{1491222 \times 371.56}} = -0.95200068 $ $ awrt - \underline{0.952} $ $ (c) \qquad Yes as r is close to -1 (if -1 < r < -0.5) \underline{or} Yes as r is close to 1 (if 1>r > 0.5) $ $ [If -0.5 \le r \le 0.5 \text{ allow "no since } r \text{ is close to } 0"] \qquad [If r > 1 \text{ award } B0] $ $ (d) \qquad b = \frac{-22408.9}{1491222.2} = -0.015027 \qquad (allow \frac{-56}{3725}) \qquad awrt - 0.015 $.1 (3) [1A1 (2) 1ft			
(b) $r = \frac{-22408.9}{\sqrt{1491222 \times 371.56}} = -0.95200068$ awrt – <u>0.952</u> M (c) Yes as <i>r</i> is close to – 1 (if –1 < <i>r</i> < – 0.5) <u>or</u> Yes as <i>r</i> is close to 1 (if 1> <i>r</i> > 0.5) [If – 0.5 ≤ <i>r</i> ≤ 0.5 allow "no since <i>r</i> is close to 0"] [If <i>r</i> > 1 award B0] (d) $b = \frac{-22408.9}{1491222.2} = -0.015027$ (allow $\frac{-56}{3725}$) awrt – 0.015 M	(3) 11A1 (2) 1ft			
(b) $r = \frac{-22408.9}{\sqrt{1491222 \times 371.56}} = -0.95200068$ awrt – <u>0.952</u> M (c) Yes as <i>r</i> is close to – 1 (if –1 < <i>r</i> < – 0.5) <u>or</u> Yes as <i>r</i> is close to 1 (if 1> <i>r</i> > 0.5) [If – 0.5 ≤ <i>r</i> ≤ 0.5 allow "no since <i>r</i> is close to 0"] [If <i>r</i> > 1 award B0] (d) $b = \frac{-22408.9}{1491222.2} = -0.015027$ (allow $\frac{-56}{3725}$) awrt – 0.015 M	11A1 (2) 1ft			
(c) Yes as r is close to -1 (if $-1 < r < -0.5$) or Yes as r is close to 1 (if $1 > r > 0.5$) [If $-0.5 \le r \le 0.5$ allow "no since r is close to 0"] [If $ r > 1$ award B0] (d) $b = \frac{-22408.9}{1491222.2} = -0.015027$ (allow $\frac{-56}{3725}$) awrt -0.015 M	(2) 1ft			
(d) $b = \frac{-22408.9}{1491222.2} = -0.015027$ (allow $\frac{-56}{3725}$) awrt - 0.015 M				
(d) $b = \frac{-22408.9}{1491222.2} = -0.015027$ (allow $\frac{-56}{3725}$) awrt - 0.015 M	(1)			
1 17 1222.2	I1 A1			
$a = \frac{110}{9} - \text{"their } b \text{"} \times \frac{7150}{9} = (12.2 - 0.015 \times 794.4), = 24.1604 \text{ so } t = 24.2 - 0.015h \text{ M}$	I1, A1			
(a) 0.015 is the drop in temp (in 0 C) for every 1(m) increases in height shows see level P	(4)			
(e) 0.013 is the <u>drop</u> in temp, (in C), for every $1(m)$ <u>increase</u> in height above sea level.	1 (1)			
(f) Change = $(`24.2 - 0.015'' \times 500) - (`24.2 - 0.015'' \times 1000) \text{ or } 500 \times ``0.015''$ M (or ly ft a value < 100)	[]			
$= \pm 7.5 \qquad (awrt \pm 7.5) \qquad (only ft a value < 100) \qquad (1)$	1111 (2) 13 marks)			
Notes				
(a) M1 for at least one correct expression (condone transcription error) 1^{st}A1 for $S_{hh} = \text{awrt 1 490 000 or } S_{th} = \text{awrt } -22 400$ (Condone S_{xx} or $S_{xy} = \dots$ or even	$\sin S_{yy} =)$			
2^{nd} A1 for $S_{ih} = -22 400$ and $S_{hh} = 1490000$ only. [This mark is assessing correct	rounding]			
(Allow no labels but mis-labelling S_{h} as S_{h} etc loses the final A1)				
(b) M1 for attempt at correct formula. Allow minor transcription errors of 2 or 3 digits. Must have their S_{hh} , S_{th} and given S_{tt} (3sf or better) in the correct places. Condone miss	M1 for attempt at correct formula. Allow minor transcription errors of 2 or 3 digits. Must have their S_{hh} , S_{th} and given S_{tt} (3sf or better) in the correct places. Condone missing "–"			
Award M1A0 for awrt -0.95 with no expression seen. M0 for $\frac{64980}{\sqrt{7171500 \times 7.864}}$	<u> </u>			
(c) B1ft must comment on supporting and state: <u>high/strong/clear</u> (negative or positive) <u>con</u> "points lie close to a straight line" is B0 since there is no evidence of this.	rrelation			
(d) 1^{st}M1 for a correct expression for <i>b</i> . Follow through their $S_{hh} \& S_{th}$. Condone miss	sing "–"			
1^{st} A1 for awrt -0.015 or allow exact fraction from rounded values.				
2 nd M1 for a correct method for <i>a</i> . Follow through their value of <i>b</i> 2 nd A1 for a correct equation for <i>t</i> and <i>h</i> with <i>a</i> = awrt 24.2 and <i>b</i> = awrt -0.015 No	o fractions			
(e) B1 Must mention h (or height) and t (or temperature) and their (1 sf) <u>value</u> of b in a correct co	omment			
(f) M1 for a correct expression seen based on their equation. Allow transcription error of If answer is $500 \times$ their <i>b</i> to 2sf and < 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and ≥ 100 (M1A1), If answer is $500 \times$ their <i>b</i> to 2sf and	1 digit. (M1A0)			
Question	Scheme	Marks		
--------------	--	--	--	
2. (a)	25 (allow any <i>x</i> where $24 < x < 26$)	B1		
(b) (c)	Q ₂ (or median or m) = 51 IQR = 63 - 46 ,= 17 (or Q ₃ - Q ₁ = 17) Outliers given by 46 - 1.5 × 17 = 20.5 <u>or</u> 63 + 1.5 × 17 = 88.5 Outliers limits are 20.5 <u>and</u> 88.5	(1) B1 M1, A1 (3) M1 A1		
	Females Allow lower Males * * *	M1 A1ft		
	10 20 30 40 50 60 70 80 90 100 both sets of whiskers Mark	B1 (5)		
(d)	 Medians: Median for females lower than males IQR: IQR for females smaller than males. Allow "lower/higher" but not "wider" Range: Range of females is less than males Skewness: Male and female marks are both positively skew Ignore other statements about average, spread, mean, st. Dev, variation, outliers etc 	(c) B1ft B1ft (2) (11 marks)		
	Notes			
	Mark (b) and (c) together BUT must see clear statement that median (or m or Q_2) = 51 and	1 IQR = 17		
(b)	M1 for 2 quartiles (at least one correct) and attempt to find the difference. Must see their 6 A1 for 17 only. [Answer only of IQR= 17 scores M1A1]	63 – their 46		
(c)	 A fully correct box-plot (either version) with no supporting work scores 5/5. Otherwise: 1st M1 for correct attempt to calc' at least one limit for outliers, ft their quartiles or IQR or award for sight of 20.5 or 88.5 1st A1 for identifying both limits of 20.5 and 88.5 2nd M1 for a box with an upper and a lower whisker(s) with at least 2 correct values (or correct ft) (condone no median marked) (condone 2 upper or 2 lower whiskers) 2nd A1ft for their 20.5 or 26, 46, 51, 63 and 85 or their 88.5 in appropriate places and readable off their scale. Follow through their 20.5 and their 88.5 only, other values need to be correct If there are 2 upper or 2 lower whiskers A0 B1 for only 2 outliers appropriately marked at 14 and 90 Do not award if whiskers go beyond these values. Apply ± 0.5 square accuracy for diagram A box plot <u>not</u> on the graph paper can only score the 1st M1A1 			
(d)	In (d) ft from their diagrams (if no diagram then use their values)1st B1ftfor one correct comment comparing median, IQR , range or skewness2nd B1ftfor a second correct comment comparing median, IQR, range or skewnessDo not allow contradictory statements	3		

Question	Scheme		Marks
3. (a)	$\frac{35+75}{2} = 0.55$		M1 A1
	200 - 0.55		
	200 2		(2)
(0)	$\frac{200-2}{200} = 0.99$		M1 A1
	200		(2)
(c)	$P(W_{2},C) = \frac{30}{20}$ 30		(-)
	$\left[P(W \mid C)\right] = \frac{P(W \cap C)}{P(C)} = \frac{200}{80} = \frac{30}{80} = 0.375$		M1 A1
	$P(C) = \frac{1}{200} \frac{1}{30}$		
	\frown	Allow diagrams with	(2)
(a)	C_{64} F_{F}	intersections between F.	M1
	$\begin{pmatrix} 16 \\ 0 \end{pmatrix}$	C and H provided these	B1 for 9, 1
		are marked with 0.	B1 for 77,33
	33 B (0)	If their diagram indicates	B1 for 64,16
	77	extra empty regions do not	
	Н	treat a blank as 0.	(4)
	1 16 22		
(e)	$\frac{1+16+33}{200} = 0.25$		M1 A1 (2)
	200		(12 marks)
	Notes		(12 1111115)
	Correct answers only score full	marks for each part	
	If a probability is not in $[0]$, 1] award M0	
(a)	A1 for 0.55 or exact equivalent fraction e.g. $\frac{11}{2}$	$01\ 53\ +\ 73\ 01\ 50\ +\ 50$	
(b)	M1 for a fully correct expression (e.g. 1-0.01)		
	A1 for 0.99 or an exact equivalent fraction		
	M1 for a correct ratio or a correct formula and at least	one correct prob (i.e. a corre	ct num or
(C)	denom). BUT award M0 if num is $P(W) \times P(C) =$	$\frac{67}{200} \times \frac{80}{200}$ or if num>denom	et num or
	A1 for 0.375 or 3/8 or any exact equivalent.	200 200	
(d)	M1 for a box and the 3 regions F, C and H labelled or imp	<u>lied</u> and single set <i>B</i> labelled. T	here should
	circles for F. C and B with $H = F' \cap C'$ etc. Condon	e lack of zero in the given diagr	am.
F	1^{st} B1 for the 9 and 1 or 0.045 and 0.005 (o.e.) in the c	orrect regions May]	have B in 3
Н	2^{nd}_{rd} B1 for the 77 and 33 or 0.385 and 0.165 (o.e.) in the	e correct regions bits th	nat are
C	3^{ru} B1 for the 64 and 16 or 0.32 and 0.08 (o.e.) in the c	orrect regions. disco	nnected.
(e)	M1 for a numerator made up of their $1 + $ their $16 + $ the	eir 33 and a denom of 200 and	d num < 200
	Also allow sum of their probabilities (provided su	m < 1)	
	A1 for 0.25 or any exact equivalent		

Question	Scheme	Marks	
4. (a)	$\sum ft = 4837.5$ (allow 4838 or 4840)	B1	
	Mean = $\frac{"4837.5"}{200}$ = 24.1875 awrt <u>24.2</u> or $\frac{387}{16}$	M1 A1	
	$\sigma = \sqrt{\frac{134281.25}{200} - \left(\frac{4837.5}{200}\right)^2}$	M1	
	$= 9.293 \dots$ (accept <i>s</i> =9.32) awrt 9.29	A1 (5)	
(b)	$Q_2 = [20.5] + \frac{(100/100.5 - 62)}{88} \times 5 = 22.659$ awrt <u>22.7</u>	M1 A1	
(c)	$Q_1 = 10.5 + \frac{(50/50.25)}{62} \times 10[=18.56]$ (*) (<i>n</i> + 1 gives 18.604)	(2) B1 cso	
(d)	Q ₃ = 25.5 (Use of $n + 1$ gives 25.734) IQR = 6.9 (Use of $n + 1$ gives 7.1)	(1) B1 B1 ft (2)	
(e)	The data is skewed (condone "negative skew")	B1 (2)	
(f)	Mean decreases and st. dev. remains the same. [Must mention mean and st. dev.] (from(a)) The median and quartiles would decrease. [Must refer to median <u>and</u> at least Q_1 .] ((b)(c)) The IQR would remain unchanged (from (d))	(1) B1 B1 B1 (3) (14 marks)	
	Notes		
(a)	Correct answers only score full marks in each part except (c)B1for 4837.5 or 4838 or 4840 seen.If no $\sum ft$ seen (or attempt at $\sum ft$ seen), B1 can be implied by a correct mean of awrt 24.2		
	1 st M1 for attempt at their $\frac{\sum ft}{\sum f}$ allow 1sf so $\sum f = awrt 200$ and $\sum ft = awrt 5$	6000.	
	$\frac{\Delta}{2^{nd}}$ M1 for a clear attempt at mean where at least 4 correct products of $\sum ft$ are seen 2 nd M1 for correct expression including square root seen. Follow through their mean. Allow a transcription error in 134281.25 but not an incorrect re-calculation.		
(b)	M1 for a correct fraction $\times 5$. Ignore end point but must be +. Allow use of $(n + 1)$ giving 100.5		
(c)	B1cso for a fully correct expression including end point. NB Answer is given. Allow use of $(n + 1)$ giving 50.25but use of 50.5 scores B0		
(d)	$1^{\text{st}} \text{ B1} \qquad \text{for 25.5 (or awrt 25.7 using } n+1)$ $2^{\text{nd}} \text{ B1ft} \qquad \text{for their } Q_3 - \text{ their } Q_1 \text{ (or 18.6) (provided > 0) Accept awrt 2sf. Correct ans. on } P_1 \text{ (or 18.6) (provided > 0) Accept awrt 2sf. } $	ly scores 2/2	
(e)	B1 Must mention that the data is skewed or not symmetrical. Do not award for "outliers"		
(f)	 1st B1 for one correct comment from the above. May refer to parts (a), (b), (c) or (a 2nd B1 for two correct comments from the above 3rd B1 for all 3 correct comments from the above 	d)	

Question	Scheme	Marks
5. (a)	3a + 2b = 0.7	M1
	a + 2a + 3a + 4b + 5b + 1.8 = 4.2 or $6a + 9b = 2.4$	M1
	5b = 1 Attempt to solve	M1
	$b = \underline{0.2}$ cao	B1
	$a = \underline{0.1}$ cao	B1
		(5)
(b)	$E(X^{2}) = 1 \times 0.1 + 2^{2} \times 0.1 + 3^{2} \times 0.1 + 4^{2} \times 0.2 + 5^{2} \times 0.2 + 6^{2} \times 0.3 (= 20.4) $ (*)	B1cso
		(1)
(c)	$[Var(X) =] 20.4 - 4.2^2 = [2.76]$	M1
	Var(5 - 3X) = 9 Var(X)	M1
	$=$ <u>24.84</u> or <u>24.8</u> (allow $\frac{621}{25}$) cao	A1
		(3)
(b)	[5k = 1 so] k = 0.2	B1
		(1)
(e)	P(Y=1) = 0.1	B1
	e.g. $P(Y = 2) = F(2) - F(1) = 0.1$	M1
	P(Y = x) = 0.1 = 0.4 = 0.2 = 0.2 Condone use of $X(x)$ instead of $Y(y)$	A1
	F(I - y) = 0.1 = 0.4 = 0.2 = 0.2 Ignore incorrect of no laber if table fully correct	
		(3)
(f)	$P(X = 1) \times P(Y = 1) = 0.01$ cao	M1, A1 (2)
		(15 marks)
	Notes	
(-)	Probabilities outside [0, 1] should be awarded M0	
(a)	1 M1 for an attempt at a mean equation in a and b based on Sum of probs. = 1 $2^{nd} M1$ for an attempt at a second linear equation in a and b based on $E(X) = 4.2$ All	ow one clin
	2^{rd} M1 for an attempt to solve their 2 linear equations based on sum of probe and $E(X) = 4.2$ And 3^{rd} M1 for an attempt to solve their 2 linear equations based on sum of probe and $E(X) = M$	Jw one snp.
	a linear equation in one variable $1^{st} B1$ for h and $2^{nd} B1$ for a Answers only score B1F	R1 only
	The 3^{rd} M1 may be implied if M2 is scored and both correct answers are given	en.
ALT	B1B1 for stating <i>b</i> and a_i	•
	1^{st} M1 for showing that sum of probs. = 1	
	2^{nd} M1 for showing that E(X) = 4.2	
	3^{rd} M1 for an overall comment "(therefore) $a = \dots$ and $b = \dots$ " No comment loses the set of t	nis mark.
(b)	B1cso for a fully correct expression (no incorrect work seen). E.g. allow $14 \times 0.1 + 41 \times 0.1$	$.2 + 36 \times 0.3$
	Or $0.1+0.4+0.9+3.2+5+10.8$. Allow in a table (with 20.4) but without "+" ex	plicitly seen.
(c)	1^{st} M1 for a correct expression for Var(X). Must see -4.2^2	
	2^{nd} M1 for $(-3)^2$ Var(X) or better, no need for a value. Accept -3^2 if it clearly is used	l as +9 later.
(e)	B1 for $P(Y = 1) = 0.1$	
	M1 for correct use of $F(y)$ to find one other prob. Can ft their k if finding $P(Y = y)$	for $y > 2$
	Can be implied by one other prob. correct or correct ft Look out for $P(3) = 3k - 0.2$ or P	$\mathbf{P}(4) = \mathbf{P}(5) = k.$
	A1 for a fully correct probability distribution. Correct table only is 3/3	
/ 6		
(1)	For 0.01 or event equivalent only for 0.01 or event equivalent only $P(Y = 1)$ and their $P(X = 1)$	
	A1 IOF 0.01 OF exact equivalent only Dep't ISW here $a = 0.1 \times 0.1 \times 0.1 \times 0.1 = a^2 \times 0.1 \times 0.1 = a^2 M0A0$	
	Doin the where e.g. $0.1 \times 0.1 \pm 0.1 \times 0.1$ or $2 \times 0.1 \times 0.1$ are MUAU	

Question	Scheme	Marks	
6. (a)	[Let X be the amount of beans in a tin. $P(X < 200) = 0.1$]		
	$\frac{200 - \mu}{7.8} = -1.2816$ [calc gives 1.28155156]	M1 B1	
	$\mu = 209.996$ awrt 210	A1	
(b)	$P(X > 225) = P\left(Z > \frac{225 - "210"}{7.8}\right)$	(3) M1	
	$= P(Z > 1.92) \underline{\text{or}} 1 - P(Z < 1.92) \qquad (allow \ 1.93)$ = 1 - 0.9726 = 0.0274 (or better) [calc gives 0.0272037] = 0.0274	A1	
	= awrt <u>2.7%</u> allow <u>0.027</u>	A1	
(c)	[Let Y be the new amount of beans in a tin] $\frac{210-205}{\sigma} = 2.3263 \text{or} \frac{200-205}{\sigma} = -2.3263 \text{[calc gives } 2.3263478]}$	(3) M1 B1	
	$\sigma = \frac{5}{2 \sigma^2 \sigma^2}$	dM1	
	$\sigma = 2.15$ (2.14933)	A1	
		(4) (10 marks)	
	Notes		
(a)	Condone poor handling of notation if answers are correct but A marks must have correct working. M1 for an attempt to standardise (allow \pm) with 200 and 7.8 and set = \pm any z value ($ z > 1$) B1 for $z = \pm 1.2816$ (or better used as a z)[May be implied by 209.996(102) or better seen] A1 for awrt 210 (can be scored for using 1.28 but then they get M1B0A1) The 210 must follow from correct working – sign scores A0 If answer is awrt 210 and 209.996 or better seen then award M1B1A1 z = 1.28 gives 209.984 and $z = 1.282$ gives 209.9996 and both score M1B0A1 If answer is awrt 210 or awrt 209.996 then award M1B0A1 (unless of course $z = 1.2816$ is seen)		
(b)	M1for attempting to standardise with 225, their mean and 7.8. Allow \pm 1^{st} A1for $Z > awrt 1.92/3$. Allow a diagram but must have $1.92/3$ and correct area indicated. Must have the Z so P($X > 225$) with or without a diagram is not sufficient. Award for $1 - 0.9726$ or $1 - 0.9732$ 2^{nd} A1for 2.7 % or better (calculator gives 2.72) Allow awrt 0.027. Correct ans scores 3/3		
(c)	1 st M1 for an attempt to standardise with 200 or 210, 205 and σ and set = \pm any z value ($ z > 2$) B1 for z = 2.3263 (or better) and compatible signs. If B0 in (a) for using a value in [1.28, 1.29) but not using 1.2816: allow awrt 2.33 here 2 nd dM1 Dependent on the first M1 for correctly rearranging to make $\sigma =$ May be implied e.g. $\frac{5}{\sigma} = 2.32 \rightarrow \sigma = 2.16$ (M1A0) BUT must have $\sigma > 0$ A1 for awrt 2.15. Must follow from correct working but a range of possible z values will do.		
	NB $2.320 < z < 2.331$ will give an answer of awrt 2.15		

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481 Email <u>publication.orders@edexcel.com</u> Order Code UA036993 Summer 2013

For more information on Edexcel qualifications, please visit our website <u>www.edexcel.com</u>

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2JE

Llywodraeth Cynulliad Cymru Welsh Assembly Government

